INDEX FOR SUPPLEMENTAL SPECIFICATIONS AND RECURRING <u>SPECIAL</u> PROVISIONS Adopted January 1, 2012 This index contains a listing of SUPPLEMENTAL SPECIFICATIONS and frequently used RECURRING SPECIAL PROVISIONS. # SUPPLEMENTAL SPECIFICATIONS Std. Spec. Sec. Page No. No Supplemental Specifications this year. # RECURRING SPECIAL PROVISIONS The following RECURRING SPECIAL PROVISIONS indicated by an "X" are applicable to this contract and are included by reference: | CHEC | CHECK SHEET # | | | |------------|---------------|--|------| | <u>NO.</u> | | | | | 1 | Х | Additional State Requirements for Federal-Aid Construction Contracts | 4 | | | | (Eff. 2-1-69) (Rev. 1-1-10) | 1 | | 2 | | Subletting of Contracts (Federal-Aid Contracts) (Eff. 1-1-88) (Rev. 5-1-93) | 4 | | 2 3 | Х | EEO (Eff. 7-21-78) (Rev. 11-18-80) | 5 | | 4 | | Specific Equal Employment Opportunity Responsibilities | 4- | | | | Non Federal-Aid Contracts (Eff. 3-20-69) (Rev. 1-1-94) | 15 | | 5 | | Required Provisions - State Contracts (Eff. 4-1-65) (Rev. 1-1-12) | 20 | | 6 | | Asbestos Bearing Pad Removal (Eff. 11-1-03) | 25 | | 7 | | Asbestos Waterproofing Membrane and Asbestos Hot-Mix Asphalt | 00 | | | | Surface Removal (Eff. 6-1-89) (Rev. 1-1-09) | 26 | | 8 | | Haul Road Stream Crossings, Other Temporary Stream Crossings, and | 0.7 | | | | In-Stream Work Pads (Eff. 1-2-92) (Rev. 1-1-98) | 27 | | 9 | | Construction Layout Stakes Except for Bridges (Eff. 1-1-99) (Rev. 1-1-07) | 28 | | 10 | | Construction Layout Stakes (Eff. 5-1-93) (Rev. 1-1-07) | 31 | | 11 | | Use of Geotextile Fabric for Railroad Crossing (Eff. 1-1-95) (Rev. 1-1-07) | . 34 | | 12 | | Subsealing of Concrete Pavements (Eff. 11-1-84) (Rev. 1-1-07) | 36 | | 13 | | Hot-Mix Asphalt Surface Correction (Eff. 11-1-87) (Rev. 1-1-09) | 40 | | 14 | | Pavement and Shoulder Resurfacing (Eff. 2-1-00) (Rev. 1-1-09) | 42 | | 15 | | PCC Partial Depth Hot-Mix Asphalt Patching (Eff. 1-1-98) (Rev. 1-1-07) | 43 | | 16 | | Patching with Hot-Mix Asphalt Overlay Removal (Eff. 10-1-95) (Rev. 1-1-07) | 45 | | 17 | | Polymer Concrete (Eff. 8-1-95) (Rev. 1-1-08) | 46 | | 18 | | PVC Pipeliner (Eff. 4-1-04) (Rev. 1-1-07) | 48 | | 19 | | Pipe Underdrains (Eff. 9-9-87) (Rev. 1-1-07) | 49 | | 20 | | Guardrail and Barrier Wall Delineation (Eff. 12-15-93) (Rev. 1-1-12) | 50 | | 21 | | Bicycle Racks (Eff. 4-1-94) (Rev. 1-1-12) | 54 | | 22 | | Temporary Modular Glare Screen System (Eff. 1-1-00) (Rev. 1-1-07) | 56 | | 23 | | Temporary Portable Bridge Traffic Signals (Eff. 8-1-03) (Rev. 1-1-07) | 58 | | 24 | | Work Zone Public Information Signs (Eff. 9-1-02) (Rev. 1-1-07) | 60 | | 25 | | Night Time Inspection of Roadway Lighting (Eff. 5-1-96) | 61 | | 26 | | English Substitution of Metric Bolts (Eff. 7-1-96) | 62 | | 27 | | English Substitution of Metric Reinforcement Bars (Eff. 4-1-96) (Rev. 1-1-03) | 63 | | 28 | | Calcium Chloride Accelerator for Portland Cement Concrete (Eff. 1-1-01) | 64 | | 29 | | Portland Cement Concrete Inlay or Overlay for Pavements (Eff. 11-1-08) (Rev. 1-1-12) | 65 | | 30 | | Quality Control of Concrete Mixtures at the Plant(Eff. 8-1-00) (Rev. 1-1-11) | 68 | | 31 | | Quality Control/Quality Assurance of Concrete Mixtures(Eff. 4-1-92) (Rev. 1-1-11) | 76 | # **TABLE OF CONTENTS** | LOCATION OF PROJECT | 1 | |--|-----| | DESCRIPTION OF PROJECT | 1 | | MAINTENANCE OF ROADWAYS | 2 | | STATUS OF UTILITIES TO BE ADJUSTED | 2 | | TRAFFIC CONTROL PLAN | 2 | | FULL-ACTUATED CONTROLLER AND CABINET (SPECIAL) | 3 | | MASTER CONTROLLER (SPECIAL) | 3 | | REBUILD EXISTING HANDHOLE | 3 | | RELOCATE EXISTING EMERGENCY VEHICLE PRIORITY SYSTEM, DETECTOR UNIT | 4 | | RELOCATE EXISTING EMERGENCY VEHICLE PRIORITY SYSTEM, PHASING UNIT | 4 | | TEMPORARY INFORMATION SIGNING | 4 | | EMERGENCY VEHICLE PRIORITY SYSTEM LINE SENSOR CABLE, NO. 20 3/C | 5 | | TRAFFIC SIGNAL BACKPLATE, SPECIAL | 6 | | TRAFFIC SIGNAL SPECIFICATIONS | 6 | | PAYMENTS TO SUBCONTRACTORS (BDE) | 57 | | DISADVANTAGED BUSINESS ENTERPRISE PARTICIPATION (BDE) | 58 | | WORKING DAYS (BDE) | 66 | | SUBCONTRACTOR MOBILIZATION PAYMENTS (BDE) | 67 | | DIGITAL TERRAIN MODELING FOR EARTHWORK CALCULATIONS (BDE) | 67 | | PAVEMENT MARKING REMOVAL (BDE) | 68 | | CONSTRUCTION AIR QUALITY - DIESEL VEHICLE EMISSIONS CONTROL (BDE) | 68 | | CONSTRUCTION AIR QUALITY - IDLING RESTRICTIONS (BDE) | 69 | | CONSTRUCTION AIR QUALITY - DIESEL RETROFIT (BDE) | 70 | | UTILITY COORDINATION AND CONFLICTS (BDE) | 72 | | TRAFFIC CONTROL DEFICIENCY DEDUCTION (BDE) | 77 | | AGREEMENT TO PLAN QUANTITY (BDE) | 78 | | PORTLAND CEMENT CONCRETE (BDE) | 78 | | QUALITY CONTROL/QUALITY ASSURANCE OF CONCRETE MIXTURES (BDÉ) | 115 | | ERRATA FOR THE 2012 STANDARD SPECIFICATIONS (BDE) | 126 | | TRACKING THE USE OF PESTICIDES (BDE) | 127 | | POLYUREA PAVEMENT MARKINGS (BDE) | 127 | # STATE OF ILLINOIS # SPECIAL PROVISIONS The following Special Provisions supplement the "Standard Specifications for Road and Bridge Construction, Adopted January 1, 2012", the latest edition of the "Manual on Uniform Traffic Control Devices for Streets and Highways", and the "Manual of Test Procedures for Materials" in effect on the date of invitation for bids, and the "Supplemental Specifications and Recurring Special Provisions" indicated on the Check Sheet included herein, which apply to and govern the construction of FAP 347 (IL 38); Section CY-TS-1 (12); DuPage County; Contract 60T79; and in case of conflict with any part, or parts, of said Specifications, the said Special Provisions shall take precedence and shall govern. Route: FAP 347 (IL 38) Section: CY-TS-1 (12) County: DuPage Contract No.: 60T79 #### LOCATION OF PROJECT This project is located at the intersections of Illinois Route 38 (Roosevelt Road) and SB and NB I-355 ramps within the Village of Glen Ellyn, Lombard and Unincorporated DuPage County in DuPage County. #### **DESCRIPTION OF PROJECT** This is a traffic signal modernization project consisting of a complete rebuild, providing one signal head per lane, UPS, retroreflective backplates, LED signal heads, traffic signal timing/progression and all incidental and collateral work necessary to complete the project as shown on the plans and as described herein. #### MAINTENANCE OF ROADWAYS Effective: September 30, 1985 Revised: November 1, 1996 Beginning on the date that work begins on this project, the Contractor shall assume responsibility for normal maintenance of all existing roadways within the limits of the improvement. This normal maintenance shall include all repair work deemed necessary by the Engineer, but shall not include snow removal operations. Traffic control and protection for maintenance of roadways will be provided by the Contractor as required by the Engineer. If items of work have not been provided in the contract, or otherwise specified for payment, such items, including the accompanying traffic control and protection required by the Engineer, will be paid for in accordance with Article 109.04 of the Standard Specifications. #### STATUS OF UTILITIES TO BE ADJUSTED Effective: January 30, 1987 Revised: July 1, 1994 Utility companies involved in this project have provided the following estimated dates: Name of Utility Type Location Estimated Dates for Start and Completion of Relocation or Adjustments No conflicts anticipated The above represents the best information available to the Department and is included for the convenience of the bidder. The applicable portions of Articles 105.07 and 107.31 of the Standard Specifications shall apply. # TRAFFIC CONTROL PLAN Effective: September 30, 1985 Revised: January 1, 2007 Traffic Control shall be according to the applicable sections of the Standard Specifications, the Supplemental Specifications, the "Illinois Manual on Uniform Traffic Control Devices for Streets and Highways", any special details and Highway Standards contained in the plans, and the Special Provisions contained herein. Special attention is called to Article 107.09 of the Standard Specifications and the following Highway Standards, Details, Quality Standard for Work Zone Traffic Control Devices, Recurring Special Provisions and Special Provisions contained herein, relating to traffic control. The Contractor shall contact the District One Bureau of Traffic at least 72 hours in advance of beginning work. #### STANDARDS: 701101, 701106, 701421, 701426, 701456, 701601, 701701, 701901 #### **DETAILS:** District One Typical Pavement Markings (TC-13) Arterial Road Information Sign (TC-22) # SPECIAL PROVISIONS: Maintenance of Roadways Temporary Information Signing Traffic Control Deficiency Deduction (BDE) # **FULL-ACTUATED CONTROLLER AND CABINET (SPECIAL)** Effective: January 1, 2002 Revised: January 1, 2007 This work shall consist of furnishing and installing a(n) "ECONOLITE" brand traffic actuated solid state digital controller in the controller cabinet of the type specified, meeting the requirements of the current District One Traffic Signal Special Provisions including conflict monitor, load switches and flasher relays, with all necessary connections for proper operation. Basis of Payment. This work will be paid for at the contract unit price each for FULL-ACTUATED CONTROLLER AND TYPE IV CABINET (SPECIAL) or FULL-ACTUATED CONTROLLER AND TYPE V CABINET (SPECIAL). #### MASTER CONTROLLER (SPECIAL) Effective: January 1, 2002 Revised: January 1, 2007 This work shall consist of furnishing and installing a(n) "ECONOLITE" brand master controller, meeting the requirements of the current District One Traffic Signal Special Provisions including all necessary connections for proper operation. <u>Basis of Payment.</u> This work will be paid for at the contract unit price each for MASTER CONTROLLER (SPECIAL). #### REBUILD EXISTING HANDHOLE Effective: January 1, 2002 Revised: January 1, 2007 This item shall consist of rebuilding and bringing
to grade a handhole at a location shown on the plans or as directed by the Engineer. The work shall consist of removing the handhole frame and cover and the walls of the handhole to a depth of eight (8) inches below the finished grade. Upon completion of the above work, four (4) holes, four (4) inches in depth and, one half (1/2) inch in diameter, shall be drilled into the remaining concrete; one hole centered on each of the four handhole walls. Four (4) #3 steel dowels, eight (8) inches in length, shall be furnished and shall be installed in the drilled holes with a masonry epoxy. All concrete debris shall be removed from State right-of-way to a location approved by the Engineer. The area adjacent to each side of the handhole shall be excavated to allow forming. All steel hooks, handhole frame, cover, and concrete shall be provided to construct a rebuilt handhole according to applicable portions of the current District One Traffic Signal Specifications. (The existing frame and cover shall be replaced if it was damaged during removal or as determined by the Engineer.) Basis of Payment. This work shall be paid for at the contract unit price each for REBUILD EXISTING HANDHOLE, which price shall be payment in full for all labor, materials, and equipment necessary to complete the work described above and as indicated on the drawings. #### RELOCATE EXISTING EMERGENCY VEHICLE PRIORITY SYSTEM, DETECTOR UNIT Effective: January 1, 2002 Revised: January 1, 2007 This item shall consist of relocating the existing emergency vehicle priority system, detector unit (single channel or dual channel) from its existing location to a new traffic signal post or mast arm assembly and pole, and connecting it to an emergency vehicle priority system, phasing unit. If the existing Emergency Vehicle Priority System, Detector Unit Assembly includes a Confirmation Beacon, the Confirmation Beacon shall also be relocated and connected to the Emergency Vehicle Priority System. Detector Unit and shall be included in this item. The emergency vehicle system is not to be inoperative for more than 8 hours and the Contractor must notify the Municipality or Fire Protection District 72 hours prior to the disconnection of the equipment. <u>Basis of Payment.</u> This item will be paid for at the contract unit price each for RELOCATE EXISTING EMERGENCY VEHICLE PRIORITY SYSTEM, DETECTOR UNIT. #### RELOCATE EXISTING EMERGENCY VEHICLE PRIORITY SYSTEM, PHASING UNIT Effective: January 1, 2002 Revised: January 1, 2007 This item shall consist of relocating the existing emergency vehicle priority system phasing unit from an existing traffic signal controller cabinet to a new traffic signal controller cabinet, as indicated in the plans or as directed by the Engineer. The work shall include disconnecting the emergency vehicle priority system phasing unit(s) and reconnecting it to a new wiring harness which is to be factory wired into the new traffic signal controller cabinet. The emergency vehicle system is not to be inoperative for more than 8 hours and the Contractor must notify the Municipality or Fire Protection District 72 hours prior to the disconnection of the equipment. The Contractor must demonstrate to the satisfaction of the Engineer that the emergency vehicle system operates properly. <u>Basis of Payment.</u> This item will be paid for at the contract unit price each for RELOCATE EXISTING EMERGENCY VEHICLE PRIORITY SYSTEM, PHASING UNIT. #### TEMPORARY INFORMATION SIGNING Effective: November 13, 1996 Revised: January 2, 2007 #### Description. This work shall consist of furnishing, installing, maintaining, relocating for various states of construction and eventually removing temporary informational signs. Included in this item may be ground mount signs, skid mount signs, truss mount signs, bridge mount signs, and overlay sign panels which cover portions of existing signs. #### Materials. Materials shall be according to the following Articles of Section 1000 - Materials: | | <u>ltem</u> | <u>Article/Section</u> | |-----|-------------------------|------------------------| | a.) | Sign Base (Notes 1 & 2) | 1090 | | b.) | Sign Face (Note 3) | 1091 | | c.) | Sign Legends | 1092 | | d.) | Sign Supports | 1093 | | e.) | Overlay Panels (Note 4) | 1090.02 | - Note 1. The Contractor may use 5/8 inch (16 mm) instead of 3/4 inch (19 mm) thick plywood. - Note 2. Type A sheeting can be used on the plywood base. - Note 3. All sign faces shall be Type A except all orange signs shall meet the requirements of Article 1106.01. - Note 4. The overlay panels shall be 0.08 inch (2 mm) thick. #### **GENERAL CONSTRUCTION REQUIRMENTS** # Installation. The sign sizes and legend sizes shall be verified by the Contractor prior to fabrication. Signs which are placed along the roadway and/or within the construction zone shall be installed according to the requirements of Article 701.14 and Article 720.04. The signs shall be 7 ft (2.1 m) above the near edge of the pavement and shall be a minimum of 2 ft (600 mm) beyond the edge of the paved shoulder. A minimum of two (2) posts shall be used. The attachment of temporary signs to existing sign structures or sign panels shall be approved by the Engineer. Any damage to the existing signs due to the Contractor's operations shall be repaired or signs replaced, as determined by the Engineer, at the Contractor's expense. Signs which are placed on overhead bridge structures shall be fastened to the handrail with stainless steel bands. These signs shall rest on the concrete parapet where possible. The Contractor shall furnish mounting details for approval by the Engineer. # Method Of Measurement. This work shall be measured for payment in square feet (square meters) edge to edge (horizontally and vertically). All hardware, posts or skids, supports, bases for ground mounted signs, connections, which are required for mounting these signs will be included as part of this pay item. # Basis Of Payment. This work shall be paid for at the contract unit price per square foot (square meter) for TEMPORARY INFORMATION SIGNING. # EMERGENCY VEHICLE PRIORITY SYSTEM LINE SENSOR CABLE, NO. 20 3/C This work shall consist of furnishing and installing lead-in cable for light detectors installed at existing and/or proposed traffic signal installations as part of an emergency vehicle priority system. The work includes installation of the lead-in cables in existing and/or new conduit. The electric cable shall be shielded and have (3) stranded conductors colored blue, orange, and yellow with a stranded tinned copper drain wire. The cable shall meet the requirements of the manufacturer of the Emergency Vehicle Priority System Equipment. Basis of Payment. This work will be paid for at the contract unit price per foot for EMERGENCY VEHICLE PRIORITY SYSTEM LINE SENSOR CABLE, NO. 20 3/C, which price shall be payment in full for furnishing, installing and making all electrical connections necessary for proper operations. #### TRAFFIC SIGNAL BACKPLATE, SPECIAL This work shall consist of furnishing and installing a retroreflective traffic signal backplate. In order to enhance the conspicuity of traffic signal heads in situations where the indications may be lost due to visual clutter, or where there is a desire to increase the visibility during power outages (especially at rural intersections) or to increase general nighttime visibility, a strip of retroreflective sheeting may be placed around the perimeter of the face of the backplate to project a rectangular appearance. All work shall be in accordance with Sections 882 and 1078.03 of Standard Specifications with the following exceptions. Delete 1st sentence of Article 1078.03 of the Standard Specifications and add "All backplates shall be aluminum and louvered". Add the following to the third paragraph of Article 1078.03 of the Standard Specifications. The reflective backplate shall not contain louvers. Delete second sentence of the fourth paragraph of Article 1078.03 of the Standard Specifications. Add the following to the fourth paragraph of Article 1078.03 of the Standard Specifications: When retro reflective sheeting is specified, it shall be Type ZZ sheeting according to Article 1091.03 and applied in preferred orientation for the maximum angularity according to the manufacturer's recommendations. The retro reflective sheeting shall be installed under a controlled environment at the manufacturer/supplier before shipment to the contractor. The aluminum backplate shall be prepared and cleaned, following recommendations of the retro reflective sheeting manufacturer. Basis of Payment. This work shall be paid for at the contract unit price each for TRAFFIC SIGNAL BACKPLATE, SPECIAL. #### TRAFFIC SIGNAL SPECIFICATIONS Effective: May 22, 2002 Revised: January 1, 2012 These Traffic Signal Special Provisions and the "District One Standard Traffic Signal Design Details" supplement the requirements of the State of Illinois "Standard Specifications for Road and Bridge Construction." The intent of these Special Provisions is to prescribe the materials and construction methods commonly used for traffic signal installations. All material furnished shall be new. The locations and the details of all installations shall be as indicated on the Plans or as directed by the Engineer. Traffic signal construction and maintenance work shall be performed by personnel holding IMSA Traffic Signal Technician Level II certification. The work to be done under this contract consists of furnishing and installing all traffic signal work as specified in the Plans and as specified herein in a manner acceptable and approved by the Engineer. #### **SECTION 720 SIGNING** # **MAST ARM SIGN PANELS** Add the following to Article 720.02 of the Standard Specifications: Signs attached to poles or posts (such as mast arm signs) shall have mounting brackets and sign channels which are equal to and completely interchangeable with those used by the District Sign
Shops. Signfix Aluminum Channel Framing System is currently recommended, but other brands of mounting hardware are acceptable based upon the Department's approval. #### **DIVISION 800 ELECTRICAL** ## SUBMITTALS. Revise Article 801.05 of the Standard Specifications to read: All material approval requests shall be submitted in accordance with the District's current Electrical Product Data and Documentation Submittal Guidelines. General requirements include: - Material approval requests shall be made at the preconstruction meeting, including major traffic signal items listed in the table in Article 801.05. Material or equipment which is similar or identical shall be the product of the same manufacturer, unless necessary for system continuity. Traffic signal materials and equipment shall bear the U.L. label whenever such labeling is available. - 2. Product data and shop drawings shall be assembled by pay item and separated from of other pay item submittals. Only the top sheet of each pay item submittal will be stamped by the Department with the review status, except shop drawings for mast arm pole assemblies and the like will be stamped with the review status on each sheet. - 3. Partial or incomplete submittals will be returned without review. - 4. Certain non-standard mast arm poles and structures will require additional review from IDOT's Central Office. Examples include ornamental/decorative and non-standard length mast arm pole assemblies. The Contractor shall account for the additional review time in his schedule. - 5. The contract number or permit number, project location/limits and corresponding pay code number must be on each sheet of correspondence,, catalog cuts and mast arm poles and assemblies drawings. - 6. Where certifications and/or warranties are specified, the information submitted for approval shall include certifications and warranties. Certifications involving inspections, and/or tests of material shall be complete with all test data, dates, and times. - 7. After the Engineer reviews the submittals for conformance with the design concept of the project, the Engineer will stamp the drawings indicating their status as 'Approved', 'Approved-As-Noted', 'Disapproved', or 'Incomplete'. Since the Engineer's review is for conformance with the design concept only, it is the Contractor's responsibility to coordinate the various items into a working system as specified. The Contractor shall not be relieved from responsibility for errors or omissions in the shop, working, layout drawings, or - other documents by the Department's approval thereof. The Contractor must still be in full compliance with contract and specification requirements. - All submitted items reviewed and marked 'APPROVED AS NOTED', 'DISAPPROVED', or 'INCOMPLETE' are to be resubmitted in their entirety, unless otherwise indicated within the submittal comments, with a disposition of previous comments to verify contract compliance at no additional cost to the contract. - 9. Exceptions to and deviations from the requirements of the Contract Documents will not be allowed. It is the Contractor's responsibility to note any deviations from Contract requirements at the time of submittal and to make any requests for deviations in writing to the Engineer. In general, substitutions will not be acceptable. Requests for substitutions must demonstrate that the proposed substitution is superior to the material or equipment required by the Contract Documents. No exceptions, deviations or substitutions will be permitted without the approval of the Engineer. #### INSPECTION OF ELECTRICAL SYSTEMS. Add the following to Article 801.10 of the Standard Specifications: (c) All cabinets including temporary traffic signal cabinets shall be assembled by an approved equipment supplier in District One. The Department reserves the right to request any controller and cabinet to be tested at the equipment supplier facilities prior to field installation, at no extra cost to this contract. # MAINTENANCE AND RESPONSIBILITY. Revise Article 801.11 of the Standard Specifications to read: - Existing traffic signal installations and/or any electrical facilities at all or various a. locations may be altered or reconstructed totally or partially as part of the work on this Contract. The Contractor is hereby advised that all traffic control equipment, presently installed at these locations, may be the property of the State of Illinois, Department of Transportation, Division of Highways, County, Private Developer, or the Municipality in which they are located. Once the Contractor has begun any work on any portion of the project, all traffic signals within the limits of this contract or those which have the item "Maintenance of Existing Traffic Signal Installation," "Temporary Traffic Signal Installation(s)" and/or "Maintenance of Existing Flashing Beacon Installation," shall become the full responsibility of the Contractor. Automatic Traffic Enforcement equipment is not owned by the State and the Contractor shall not be responsible for maintaining it during construction. The Contractor shall supply the Engineer, Area Traffic Signal Maintenance and Operations Engineer, IDOT ComCenter and the Department's Electrical Maintenance Contractor with two 24-hour emergency contact names and telephone numbers. - b. When the project has a pay item for "Maintenance of Existing Traffic Signal Installation," "Temporary Traffic Signal Installation(s)" and/or "Maintenance of Existing Flashing Beacon Installation," the Contractor must notify both the Area Traffic Signal Maintenance and Operations Engineer at (847) 705-4424 and the Department's Electrical Maintenance Contractor, of their intent to begin any physical construction work on the Contract or any portion thereof. This notification must be made a minimum of seven (7) working days prior to the start of construction to allow sufficient time for inspection of the existing traffic signal installation(s) and transfer of maintenance to the Contractor. If work is started prior to an inspection, maintenance of the traffic signal installation(s) will be transferred to the Contractor without an inspection. The Contractor will become responsible for repairing or replacing all equipment that is not operating properly or is damaged at no cost to the owner of the traffic signal. Final repairs or replacement of damaged equipment must meet the approval of the Engineer prior to or at the time of final inspection otherwise the traffic signal installation will not be accepted. - c. Contracts such as pavement grinding or patching which result in the destruction of traffic signal loops do not require maintenance transfer, but require a notification of intent to work and an inspection. A minimum of seven (7) working days prior to the loop removal, the Contractor shall notify the Area Traffic Signal Maintenance and Operations Engineer at (847) 705-4424 and the Department's Electrical Maintenance Contractor, at which time arrangements will be made to adjust the traffic controller timing to compensate for the absence of detection. Damaged Automatic Traffic Enforcement equipment, including cameras, detectors, or other peripheral equipment, shall be replaced by others, per Permit agreement, at no cost to the contract. See additional requirements in these specifications under Inductive Loop Detector. - d. The Contractor is advised that the existing and/or temporary traffic signal installation must remain in operation during all construction stages, except for the most essential down time. Any shutdown of the traffic signal installation, which exceeds fifteen (15) minutes, must have prior approval of the Engineer. Approval to shutdown the traffic signal installation will only be granted during the period extending from 10:00 a.m. to 3:00 p.m. on weekdays. Shutdowns shall not be allowed during inclement weather or holiday periods. - e. The Contractor shall be fully responsible for the safe and efficient operation of the traffic signals. Any inquiry, complaint or request by the Department, the Department's Electrical Maintenance Contractor or the public, shall be investigated and repairs begun within one hour. Failure to provide this service will result in liquidated damages of \$500 per day per occurrence. In addition, the Department reserves the right to assign any work not completed within this timeframe to the Electrical Maintenance Contractor. All costs associated to repair this uncompleted work shall be the responsibility of the Contractor. Failure to pay these costs to the Electrical Maintenance Contractor within one month after the incident will result in additional liquidated damages of \$500 per month per occurrence. Unpaid bills will be deducted from the cost of the Contract. The District's Electrical Maintenance Contractor may inspect any signalizing device on the Department's highway system at any time without notification. - f. Any proposed activity in the vicinity of a highway-rail grade crossing must adhere to the guidelines set forth in the current edition of the Manual on Uniform Traffic Control Devices (MUTCD) regarding work in temporary traffic control zones in the vicinity of highway-rail grade crossings which states that lane restrictions, flagging, or other operations shall not create conditions where vehicles can be queued across the railroad tracks. If the queuing of vehicles across the tracks cannot be avoided, a uniformed law enforcement officer or flagger shall be provided at the crossing to prevent vehicles from stopping on the tracks, even if automatic warning devices are in place. ## DAMAGE TO TRAFFIC SIGNAL SYSTEM. Add the following to Article 801.12(b) of the Standard Specifications to read: Any traffic signal control equipment damaged or not operating properly from any cause whatsoever shall be replaced with new equipment meeting current District One traffic signal specifications and provided by the Contractor at no additional cost to
the Contract and/or owner of the traffic signal system, all as approved by the Engineer. Final replacement of damaged equipment must meet the approval of the Engineer prior to or at the time of final inspection otherwise the traffic signal installation will not be accepted. Cable splices outside the controller cabinet shall not be allowed. Automatic Traffic Enforcement equipment, such as Red Light Enforcement cameras, detectors, and peripheral equipment, damaged or not operating properly from any cause whatsoever, shall be the responsibility of the municipality or the Automatic Traffic Enforcement company per Permit agreement. #### TRAFFIC SIGNAL INSPECTION (TURN-ON). Revise Article 801.15(b) of the Standard Specifications to read: It is the intent to have all electric work completed and equipment field tested by the vendor prior to the Department's "turn-on" field inspection. If in the event the Engineer determines work is not complete and the inspection will require more than two (2) hours to complete, the inspection shall be canceled and the Contractor will be required to reschedule at another date. The maintenance of the traffic signals will not be accepted until all punch list work is corrected and re-inspected. When the road is open to traffic, except as otherwise provided in Section 850 of the Standard Specifications, the Contractor may request a turn-on and inspection of the completed traffic signal installation at each separate location. This request must be made to the Area Traffic Signal Maintenance and Operations Engineer at (847) 705-4424 a minimum of seven (7) working days prior to the time of the requested inspection. The Department will not grant a field inspection until notification is provided from the Contractor that the equipment has been field tested and the intersection is operating according to Contract requirements. The Department's facsimile number is (847) 705-4089. The Contractor must invite local fire department personnel to the turn-on when Emergency Vehicle Preemption (EVP) is included in the project. When the contract includes the item RE-OPTIMIZE TRAFFIC SIGNAL SYSTEM, OPTIMIZE TRAFFIC SIGNAL SYSTEM, OPTIMIZE TRAFFIC SIGNAL TIMINGS, the Contractor must notify the SCAT Consultant of the turn-on/detour implementation schedule, as well as stage changes and phase changes during construction. The Contractor must have all traffic signal work completed and the electrical service installation connected by the utility company prior to requesting an inspection and turn-on of the traffic signal installation. The Contractor shall be responsible to provide a police officer to direct traffic at the time of testing. The Contractor shall provide a representative from the control equipment vendor's office to attend the traffic signal inspection for both permanent and temporary traffic signal turn-ons. Upon demonstration that the signals are operating and all work is completed in accordance with the Contract and to the satisfaction of the Engineer, the Engineer will then allow the signals to be placed in continuous operation. The Agency that is responsible for the maintenance of each traffic signal installation will assume the maintenance upon successful completion of this inspection. The District requires the following from the Contractor at traffic signal turn-ons. - 1. One set of signal plans of record with field revisions marked in red ink. - 2. Written notification from the Contractor and the equipment vendor of satisfactory field testing. - 3. A knowledgeable representative of the controller equipment supplier shall be required at the traffic signal turn-on. The representative shall be knowledgeable of the cabinet design and controller functions. - 4. A copy of the approved material letter. - 5. One (1) copy of the operation and service manuals of the signal controller and associated control equipment. - 6. Five (5) copies 11" x 17" (280 mm X 430 mm) of the cabinet wiring diagrams. - 7. The controller manufacturer shall supply a printed form, not to exceed 11" x 17" (280 mm X 430 mm) for recording the traffic signal controller's timings; backup timings; coordination splits, offsets, and cycles; TBC Time of Day, Week and Year Programs; Traffic Responsive Program, Detector Phase Assignment, Type and Detector Switching; and any other functions programmable from the keyboard. The form shall include a location, date, manufacturer's name, controller model and software version. The form shall be approved by the Engineer and a minimum of three (3) copies must be furnished at each turn-on. The manufacturer must provide all programming information used within the controller at the time of turn-on. - 8. All manufacturer and contractor warrantees and guarantees required by Article 801.14. Acceptance of the traffic signal equipment by the Department shall be based upon inspection results at the traffic signal "turn on." If approved, traffic signal acceptance shall be verbal at the "turn on" inspection followed by written correspondence from the Engineer. The Contractor shall be responsible for all traffic signal equipment and associated maintenance thereof until Departmental acceptance is granted. All equipment and/or parts to keep the traffic signal installation operating shall be furnished by the Contractor. No spare traffic signal equipment is available from the Department. All punch list work shall be completed within two (2) weeks after the final inspection. The Contractor shall notify the Electrical Maintenance Contractor to inspect all punch list work. Failure to meet these time constraints shall result in liquidated damage charges of \$500 per month per incident. All cost of work and materials required to comply with the above requirements shall be included in the pay item bid prices, under which the subject materials and signal equipment are paid, and no additional compensation will be allowed. Materials and signal equipment not complying with the above requirements shall be subject to removal and disposal at the Contractor's expense. #### RECORD DRAWINGS The requirements listed for Electrical Installation shall apply for Traffic Signal Installations in Article 801.16. Revise the 2nd paragraph of Article 801.16 of the Standard Specifications to read: - a. "When the work is complete, and seven days before the request for a final inspection, the full-size set of contract drawings. Stamped "RECORD DRAWINGS", shall be submitted to the Engineer for review and approval and shall be stamped with the date and the signature of the Contractor's supervising Engineer or electrician. The record drawings shall be submitted in PDF format on CDROM as well as hardcopy for review and approval. - b. In addition to the record drawings, copies of the final catalog cuts which have been Approved or Approved as Noted shall be submitted in PDF format along with the record drawings. The PDF files shall clearly indicate the pay item either by filename or PDF Table of Contents referencing the respective pay item number for multi-item PDF files. Specific part or model numbers of items which have been selected shall be clearly visible." - c. Additional requirements are listed in the District's Electrical Product Data and Documentation Guidelines. Add the following to Article 801.16 of the Standard Specifications: "In addition to the specified record drawings, the Contactor shall record GPS coordinates of the following traffic signal components being installed, modified or being affected in other ways by this contract: - All Mast Arm Poles and Posts - Handholes 44 - Conduit roadway crossings - Controller Cabinets - Communication Cabinets - Electric Service Disconnect locations - CCTV Camera installations - Fiber Optic Splice Locations Datum to be used shall be North American 1983. Data shall be provided electronically and in print form. The electronic format shall be compatible with MS Excel. Latitude and Longitude shall be in decimal degrees with a minimum of 6 decimal places. Each coordinate shall have the following information: - 1. Description of item - 2. Designation or approximate station if the item is undesignated - 3. Latitude - 4. Longitude #### Examples: | Description | Designation | Latitude | Longitude | |-----------------------------|--------------------------------|-----------|------------| | Mast Arm Pole Assembly | MP (SW, NW, SE or NE corner) | | | | (dual, combo, etc) | • | 41.580493 | -87.793378 | | FO mainline splice handhole | HHL-ST31 | 41.558532 | -87.792571 | | Handhole | HH | 41.765532 | -87.543571 | | Electric Service | Elec Srv | 41.602248 | -87.794053 | | Conduit crossing | SB IL83 to EB I290 ramp SIDE A | 41.584593 | -87.793378 | | PTZ Camera | PTZ | 41.584600 | -87.793432 | | Signal Post | Post | 41.558532 | -87.792571 | | Controller Cabinet | CC | 41.651848 | -87.762053 | | Master Controller Cabinet | MCC | 41.580493 | -87.793378 | | Communication Cabinet | ComC | 41.558532 | -87.789771 | | Fiber splice connection | Toll Plaza34 | 41.606928 | -87.794053 | Prior to the collection of data, the contractor shall provide a sample data collection of at least six data points of known locations to be reviewed and verified by the Engineer to be accurate within 100 feet. Upon verification, data collection can begin. Data collection can be made as construction progresses, or can be collected after all items are installed. If the data is unacceptable the contractor shall make corrections to the data collection equipment and or process and submit the data for review and approval as specified. Accuracy. Data collected is to be mapping grade. A handheld mapping grade GPS device shall be used for the data collection. The receiver shall support differential correction and data shall have a minimum 5 meter accuracy after post processing. GPS receivers integrated into cellular communication devices, recreational and automotive GPS devices are not acceptable. The GPS shall be the product of an established major
GPS manufacturer having been in the business for a minimum of 6 years." Delete the last sentence of the 3rd paragraph of Article 801.16. #### LOCATING UNDERGROUND FACILITIES. Revise Section 803 to the Standard Specifications to read: If this Contract requires the services of an Electrical Contractor, the Contractor shall be responsible at his/her own expense for locating existing IDOT electrical facilities prior to performing any work. If this Contract does not require the services of an Electrical Contractor, the Contractor may request one free locate for existing IDOT electrical facilities from the District One Electrical Maintenance Contractor prior to the start of any work. Additional requests may be at the expense of the Contractor. The location of underground traffic facilities does not relieve the Contractor of their responsibility to repair any facilities damaged during construction at their expense. The exact location of all utilities shall be field verified by the Contractor before the installation of any components of the traffic signal system. For locations of utilities, locally owned equipment, and leased enforcement camera system facilities, the local Counties or Municipalities may need to be contacted: in the City of Chicago contact Digger at (312) 744-7000 and for all other locations contact J.U.L.I.E. at 1-800-892-0123 or 811. # RESTORATION OF WORK AREA. Add the following article to Section 801 of the Standard Specifications: 801.17 Restoration of work area. Restoration of the traffic signal work area shall be included in the related pay items such as foundation, conduit, handhole, trench and backfill, underground raceways, etc. All roadway surfaces such as shoulders, medians, sidewalks, pavement, etc. shall be replaced in kind. All damage to mowed lawns shall be replaced with an approved sod, and all damage to unmowed fields shall be seeded. All brick pavers disturbed in the work area shall be restored to their original configuration as directed by the Engineer. All damaged brick pavers shall be replaced with a comparable material approved by the Engineer. Restoration of the work area shall be included in the contract without any extra compensation allowed to the Contractor. #### **ELECTRIC SERVICE INSTALLATION.** Revise Section 805 of the Standard Specifications to read: #### Description. This work shall consist of all materials and labor required to install, modify, or extend the electric service installation. All installations shall meet the requirements of the details in the "District One Standard Traffic Signal Design Details" and applicable portions of the Specifications. #### General. The electric service installation shall be the electric service disconnecting means and it shall be identified as suitable for use as service equipment. The electric utility contact information is noted on the plans and represents the current information at the time of contract preparation. The Contractor must request in writing for service and/or service modification within 10 days of contract award and must follow-up with the electric utility to assure all necessary documents and payment are received by the utility. The Contractor shall forward copies of all correspondence between the contractor and utility company to the Engineer and Area Traffic Signal Maintenance and Operations Engineer. The service agreement and sketch shall be submitted for signature to the IDOT's Traffic Operations Programs Engineer. #### Materials. a. General. The completed control panel shall be constructed in accordance with UL Std. 508A, Industrial Control Panel, and carry the UL label. Wire terminations shall be UL listed. #### b. Enclosures. 1. Pole Mounted Cabinet. The cabinet shall be UL 50, NEMA Type 4X, unfinished single door design, fabricated from minimum 0.080-inch (2.03 mm) thick Type 5052 H-32 aluminum. Seams shall be continuous welded and ground smooth. Stainless steel screws and clamps shall secure the cover and assure a watertight seal. The cover shall be removable by pulling the continuous stainless steel hinge pin. The cabinet shall have an oil-resistant gasket and a lock kit shall be provided with an internal O-ring in the locking mechanism assuring a watertight and dust-tight seal. The cabinet shall be sized to adequately house all required components with extra space for arrangement and termination of wiring. A minimum size of 14-inches (350) - mm) high, 9-inches (225 mm) wide and 8-inches (200 mm) in depth is required. The cabinet shall be channel mounted to a wooden utility pole using assemblies recommended by the manufacturer. - 2. Ground Mounted Cabinet. The cabinet shall be UL 50, NEMA Type 3R unfinished single door design with back panel. The cabinet shall be fabricated from Type 5052 H-32 aluminum with the frame and door 0.125inch (3.175 mm) thick, the top 0.250-inch (6.350 mm) thick and the bottom 0.500-inch (12.70 mm) thick. Seams shall be continuous welded and ground smooth. The door and door opening shall be double flanged. The door shall be approximately 80% of the front surface, with a full length tamperproof stainless steel .075-inch (1.91 mm) thick hinge bolted to the cabinet with stainless steel carriage bolts and nylocks nuts. The locking mechanism shall be slam-latch type with a keyhole cover. The cabinet shall be sized to adequately house all required components with extra space for arrangement and termination of wiring. A minimum size of 40-inches (1000 mm) high, 16inches (400 mm) wide and 15-inches (375 mm) in depth is required. The cabinet shall be mounted upon a square Type A concrete foundation as indicated on the plans. The foundation is paid for separately. - c. Surge Protector. Overvoltage protection, with LED indicator, shall be provided for the 120 volt load circuit by the means MOV and thermal fusing technology. The response time shall be <5n seconds and operate within a range of -40C to +85C. The surge protector shall be UL 1449 Listed. - d. Circuit Breakers. Circuit breakers shall be standard UL listed molded case, thermal-magnetic bolt-on type circuit breakers with trip free indicating handles. 120 volt circuit breakers shall have an interrupting rating of not less than 65,000 rms symmetrical amperes. Unless otherwise indicated, the main disconnect circuit breaker for the traffic signal controller shall be rated 60 amperes, 120 V and the auxiliary circuit breakers shall be rated 10 amperes, 120 V. - e. Fuses, Fuseholders and Power Indicating Light. Fuses shall be small-dimensional cylindrical fuses of the dual element time-delay type. The fuses shall be rated for 600 V AC and shall have a UL listed interrupting rating of not less than 10,000 rms symmetrical amperes at rated voltage. The power indicating light shall be LED type with a green colored lens and shall be energized when electric utility power is present. - f. Ground and Neutral Bus Bars. A single copper ground and neutral bus bar, mounted on the equipment panel shall be provided. Ground and neutral conductors shall be separated on the bus bar. Compression lugs, plus 2 spare lugs, shall be sized to accommodate the cables with the heads of the connector screws painted green for ground connections and white for neutral connections. - g. Utility Services Connection. The Contractor shall notify the Utility Company marketing representative a minimum of 30 working days prior to the anticipated date of hook-up. This 30 day advance notification will begin only after the Utility Company marketing representative has received service charge payments from the Contractor. Prior to contacting the Utility Company marketing representative for service connection, the service installation controller cabinet and cable must be installed for inspection by the Utility Company. h. Ground Rod. Ground rods shall be copper-clad steel, a minimum of 10 feet (3.0m) in length, and 3/4 inch (20mm) in diameter. Ground rod resistance measurements to ground shall be 25 ohms or less. If necessary additional rods shall be installed to meet resistance requirements at no additional cost to the contract. #### Installation. - a. General. The Contractor shall confirm the orientation of the traffic service installation and its door side with the engineer, prior to installation. All conduit entrances into the service installation shall be sealed with a pliable waterproof material. - b. Pole Mounted. Brackets designed for pole mounting shall be used. All mounting hardware shall be stainless steel. Mounting height shall be as noted on the plans or as directed by the Engineer. - c. Ground Mounted. The service installation shall be mounted plumb and level on the foundation and fastened to the anchor bolts with hot-dipped galvanized or stainless steel nuts and washers. The space between the bottom of the enclosure and the top of the foundation shall be caulked at the base with silicone. ## Basis of Payment. The service installation shall be paid for at the contract unit price each for SERVICE INSTALLATION of the type specified which shall be payment in full for furnishing and installing the service installation complete. The CONCRETE FOUNDATION, TYPE A, which includes the ground rod, shall be paid for separately. SERVICE INSTALLATION, POLE MOUNTED shall include the 3/4 inch (20mm) grounding conduit, ground rod, and pole mount assembly. Any charges by the utility companies shall be approved by the engineer and paid for as an addition to the contract according to Article 109.05 of the Standard Specifications. #### **GROUNDING OF TRAFFIC SIGNAL SYSTEMS.** Revise Section 806 of the Standard Specifications to read: # General. *** All traffic signal systems, equipment and appurtenances shall be properly grounded in strict conformance with the NEC. See IDOT District One Traffic Signal detail plan sheets for additional information. The grounding electrode system shall include a ground rod installed with each traffic signal controller concrete foundation and all mast arm
and post concrete foundations. An additional ground rod will be required at locations were measured resistance exceeds 25 ohms. Ground rods are included in the applicable concrete foundation or service installation pay item and will not be paid for separately. Testing shall be according to Article 801.13 (a) (4) and (5). - (a) The grounded conductor (neutral conductor) shall be white color coded. This conductor shall be bonded to the equipment grounding conductor only at the Electric Service Installation. All power cables shall include one neutral conductor of the same size. - (b) The equipment grounding conductor shall be green color coded. The following is in addition to Article 801.04 of the Standard Specifications. - 1. Equipment grounding conductors shall be bonded to the grounded conductor (neutral conductor) only at the Electric Service Installation. The equipment grounding conductor is paid for separately and shall be continuous. The Earth shall not be used as the equipment grounding conductor. - 2. Equipment grounding conductors shall be bonded, using a Listed grounding connector, to all traffic signal mast arm poles, traffic signal posts, pedestrian posts, pull boxes, handhole frames and covers, conduits, and other metallic enclosures throughout the traffic signal wiring system, except where noted herein. Bonding shall be made with a splice and pigtail connection, using a sized compression type copper sleeve, sealant tape, and heat-shrinkable cap. A Listed electrical joint compound shall be applied to all conductors' terminations, connector threads and contact points. Conduit grounding bushings shall be installed at all conduit terminations. - 3. All metallic and non-metallic raceways containing traffic signal circuit runs shall have a continuous equipment grounding conductor, except raceways containing only detector loop lead-in circuits, circuits under 50 volts and/or fiber optic cable will not be required to include an equipment grounding conductor. - 4. Individual conductor splices in handholes shall be soldered and sealed with heat shrink. When necessary to maintain effective equipment grounding, a full cable heat shrink shall be provided over individual conductor heat shrinks. - (c) The grounding electrode conductor shall be similar to the equipment grounding conductor in color coding (green) and size. The grounding electrode conductor is used to connect the ground rod to the equipment grounding conductor and is bonded to ground rods via exothermic welding, listed pressure connectors, listed clamps or other approved listed means. # **GROUNDING EXISTING HANDHOLE FRAME AND COVER.** #### Description. This work shall consist of all materials and labor required to bond the equipment grounding conductor to the existing handhole frame and handhole cover. All installations shall meet the requirements of the details in the "District One Standard Traffic Signal Design Details," and applicable portions of the Standard Specifications and these specifications. The equipment grounding conductor shall be bonded to the handhole frame and to the handhole cover. Two (2) ½-inch diameter x 1 ¼-inch long hex-head stainless steel bolts, spaced 1.75-inches apart center-to-center shall be fully welded to the frame and to the cover to accommodate a heavy duty Listed grounding compression terminal (Burndy type YGHA or approved equal). The grounding compression terminal shall be secured to the bolts with stainless steel split-lock washers and nylon-insert locknuts. Welding preparation for the stainless steel bolt hex-head to the frame and to the cover shall include thoroughly cleaning the contact and weldment area of all rust, dirt and contaminates. The Contractor shall assure a solid strong weld. The welds shall be smooth and thoroughly cleaned of flux and spatter. The grounding installation shall not affect the proper seating of the cover when closed. The grounding cable shall be paid for separately. Units measured for payment will be counted on a per handhole basis, regardless of the type of handhole and its location. # Basis of Payment. This work shall be paid for at the contract unit price each for GROUNDING EXISTING HANDHOLE FRAME AND COVER which shall be payment in full for grounding the handhole complete. ## COILABLE NON-METALLIC CONDUIT. #### Description. This work shall consist of furnishing and installing empty coilable non-metallic conduit (CNC) for detector loop raceways. #### General. The CNC installation shall be in accordance with Sections 810 and 811 of the Standard Specifications except for the following: Add the following to Article 810.03 of the Standard Specifications: CNC meeting the requirements of NEC Article 353 shall be used for detector loop raceways to the handholes. Add the following to Article 811.03 of the Standard Specifications: On temporary traffic signal installations with detector loops, CNC meeting the requirements of NEC Article 353 shall be used for detector loop raceways from the saw-cut to 10 feet (3m) up the wood pole, unless otherwise shown on the plans #### Basis_of Payment. All installations of CNC for loop detection shall be included in the contract and not paid for separately. #### HANDHOLES. Add the following to Section 814 of the Standard Specifications: All handholes shall be concrete, poured in place, with inside dimensions of 21-1/2 inches (549mm) minimum. Frames and lid openings shall match this dimension. The cover of the handhole frame shall be labeled "Traffic Signals" with legible raised letters. For grounding purposes the handhole frame shall have provisions for a 7/16 inch (15.875mm) diameter stainless bolt cast into the frame. The covers shall have a stainless steel threaded stint extended from the eye hook assembly for the purpose of attaching the grounding conductor to the handhole cover. The minimum wall thickness for heavy duty hand holes shall be 12 inches (300mm). All conduits shall enter the handhole at a depth of 30 inches (760mm) except for the conduits for detector loops when the handhole is less than 5 feet (1.52 m) from the detector loop. All conduit ends should be sealed with a waterproof sealant to prevent the entrance of contaminants into the handhole. Steel cable hooks shall be coated with hot-dipped galvanization in accordance with AASHTO Specification M111. Hooks shall be a minimum of 1/2 inch (12.7 mm) diameter with two 90 degree bends and extend into the handhole at least 6 inches (150 mm). Hooks shall be placed a minimum of 12 inches (300 mm) below the lid or lower if additional space is required. #### **GROUNDING CABLE.** The cable shall meet the requirements of Section 817 of the "Standard Specifications," except for the following: Add the following to Article 817.02 (b) of the Standard Specifications: Unless otherwise noted on the Plans, traffic signal grounding conductor shall be one conductor, #6 gauge copper, with a green color coded XLP jacket. The traffic signal grounding conductor shall be bonded, using a Listed grounding connector (Burndy type KC/K2C, as applicable, or approved equal), to all proposed and existing traffic signal mast arm poles and traffic/pedestrian signal posts, including push button posts. The grounding conductor shall be bonded to all proposed and existing pull boxes, handhole frames and covers and other metallic enclosures throughout the traffic signal wiring system and noted herein and detailed on the plans. The grounding conductor shall be bonded to conduit terminations using rated grounding bushings. Bonding to existing handhole frames and covers shall be paid for separately. Add the following to Article 817.05 of the Standard Specifications: #### Basis of Payment. Grounding cable shall be measured in place for payment in foot (meter). Payment shall be at the contract unit price for ELECTRIC CABLE IN CONDUIT, GROUNDING, NO. 6, 1C, which price includes all associated labor and material including grounding clamps, splicing, exothermic welds, grounding connectors, conduit grounding bushings, and other hardware. #### RAILROAD INTERCONNECT CABLE. The cable shall meet the requirements of Section 873 of the Standard Specifications, except for the following: Add to Article 873.02 of the Standard Specifications: The railroad interconnect cable shall be three conductor stranded #14 copper cable in a clear polyester binder, shielded with #36 AWG tinned copper braid with 85% coverage, and insulated with .016" polyethylene (black, blue, red). The jacket shall be black 0.045 PVC or polyethylene. Add the following to Article 873.05 of the Standard Specifications: #### Basis of Payment. This work shall be paid for at the contract unit price per foot (meter) for ELECTRIC CABLE IN CONDUIT, RAILROAD, NO. 14 3C, which price shall be payment in full for furnishing, installing, and making all electrical connections in the traffic signal controller cabinet. Connections in the railroad controller cabinet shall be performed by railroad personnel. # FIBER OPTIC TRACER CABLE. The cable shall meet the requirements of Section 817 of the "Standard Specifications," except for the following: Add the following to Article 817.03 of the Standard Specifications: In order to trace the fiber optic cable after installation, the tracer cable shall be installed in the same conduit as the fiber optic cable in locations shown on the plans. The tracer cable shall be continuous, extended into the controller cabinet and terminated on a barrier type terminal strip mounted on the side wall of the controller cabinet. The barrier type terminal strip and tracer cable shall be clearly marked and identified. All tracer cable splices shall be kept to a minimum and shall incorporate maximum lengths of cable supplied by the manufacturer. The tracer cable will be allowed to be spliced at handholes only. The tracer cable splice shall use a Western Union Splice soldered with resin core flux and shall be soldered using a soldering iron. Blow torches or other
devices which oxidize copper cable shall not be allowed for soldering operations. All exposed surfaces of the solder shall be smooth. The splice shall be covered with a black shrink tube meeting UL 224 guidelines, Type V and rated 600v, minimum length 4 inches (100 mm) and with a minimum 1 inch (25 mm) coverage over the XLP insulation, underwater grade. Add the following to Article 817.05 of the Standard Specifications: #### Basis of Payment The tracer cable shall be paid for separately as ELECTRIC CABLE IN CONDUIT, TRACER, NO. 14 1C per foot (meter), which price shall include all associated labor and material for installation. # MAINTENANCE OF EXISTING TRAFFIC SIGNAL INSTALLATION. Revise Articles 850.02 and 850.03 of the Standard Specifications to read: #### Procedure The energy charges for the operation of the traffic signal installation shall be paid for by others. Full maintenance responsibility shall start as soon as the Contractor begins any physical work on the Contract or any portion thereof. The Contractor shall have electricians with IMSA Level II certification on staff to provide signal maintenance. This item shall include maintenance of all traffic signal equipment at the intersection, including emergency vehicle pre-emption equipment, master controllers, uninterruptible power supply (UPS and batteries), telephone service installations, communication cables, conduits to adjacent intersections, and other traffic signal equipment, but shall not include Automatic Traffic Enforcement equipment, such as Red Light Enforcement cameras, detectors, or peripheral equipment, not owned by the State. #### Maintenance. The maintenance shall be according to MAINTENANCE AND RESPONSIBILITY in Division 800 of these specifications and the following: The Contractor shall check all controllers every two (2) weeks, which will include visually inspecting all timing intervals, relays, detectors, and pre-emption equipment to ensure that they are functioning properly. This item includes, as routine maintenance, all portions of emergency vehicle pre-emption equipment. The Contractor shall maintain in stock at all times a sufficient amount of materials and equipment to provide effective temporary and permanent repairs. The Contractor shall provide immediate corrective action when any part or parts of the system fail to function properly. Two far side heads facing each approach shall be considered the minimum acceptable signal operation pending permanent repairs. When repairs at a signalized intersection require that the controller be disconnected or otherwise removed from normal operation, and power is available, the Contractor shall place the traffic signal installation on flashing operation. The signals shall flash RED for all directions unless a different indication has been specified by the Engineer. The Contractor shall be required to place stop signs (R1-1-36) at each approach of the intersection as a temporary means of regulating traffic. When the signals operate in flash, the Contractor shall furnish and equip all their vehicles assigned to the maintenance of traffic signal installations with a sufficient number of stop signs as specified herein. The Contractor shall maintain a sufficient number of spare stop signs in stock at all times to replace stop signs which may be damaged or stolen. The Contractor shall provide the Engineer with a 24 hour telephone number for the maintenance of the traffic signal installation and for emergency calls by the Engineer. Traffic signal equipment which is lost or not returned to the Department for any reason shall be replaced with new equipment meeting the requirements of the Standard Specifications and these special provisions. The Contractor shall respond to all emergency calls from the Department or others within one hour after notification and provide immediate corrective action. When equipment has been damaged or becomes faulty beyond repair, the Contractor shall replace it with new and identical equipment. The cost of furnishing and installing the replaced equipment shall be borne by the Contractor at no additional charge to the contract. The Contractor may institute action to recover damages from a responsible third party. If at any time the Contractor fails to perform all work as specified herein to keep the traffic signal installation in proper operating condition or if the Engineer cannot contact the Contractor's designated personnel, the Engineer shall have the State's Electrical Maintenance Contractor perform the maintenance work required. The State's Electrical Maintenance Contractor shall bill the Contractor for the total cost of the work. The Contractor shall pay this bill within thirty (30) days of the date of receipt of the invoice or the cost of such work will be deducted from the amount due the Contractor. The Contractor shall allow the Electrical Maintenance Contractor to make reviews of the Existing Traffic Signal Installation that has been transferred to the Contractor for Maintenance. #### TRAFFIC ACTUATED CONTROLLER. Add the following to Article 857.02 of the Standard Specifications: Controllers shall be NTCIP compliant NEMA TS2 Type 1, Econolite ASC/3S-1000 or Eagle/Siemens M50 unless specified otherwise on the plans or elsewhere on these specifications. Only controllers supplied by one of the District One approved closed loop equipment manufacturers will be allowed. The controller shall be the most recent model and software version supplied by the manufacturer at the time of the approval and include the standard data key. The traffic signal controller shall provide features to inhibit simultaneous display of a circular yellow ball and a yellow arrow display. Individual load switches shall be provided for each vehicle, pedestrian, and right turn over lap phase. The controller shall prevent phases from being skipped during program changes and after all preemption events. Add the following to Article 857.03 of the Standard Specifications: The Contractor shall arrange to install a standard voice-grade dial-up telephone line to the RAILROAD, FULL-ACTUATED CONTROLLER AND CABINET as called for on the traffic signal installation plans. If the traffic signal installation is part of a traffic signal system, a telephone line is usually not required, unless a telephone line is called for on the traffic signal plans. The Contractor shall follow the requirements for the telephone service installation as contained in the current District One Traffic Signal Special Provisions under Master Controller. # MASTER CONTROLLER. Revise Articles 860.02 - Materials and 860.03 - Installation of the Standard Specifications to read: Only controllers supplied by one of the District approved closed loop equipment manufacturers will be allowed. Only NEMA TS 2 Type 1 Eagle/Siemens and Econolite closed loop systems shall be supplied. The latest model and software version of master controller shall be supplied. Functional requirements in addition to those in Section 863 of the Standard Specifications include: The system commands shall consist of, as a minimum, six (6) cycle lengths, five (5) offsets, three (3) splits, and four (4) special functions. The system commands shall also include commands for free or coordinated operation. Traffic Responsive operation shall consist of the real time acquisition of system detector data, data validation, and the scaling of acquired volumes and occupancies in a deterministic fashion so as to cause the selection and implementation of the most suitable traffic plan. Upon request by the Engineer, each master shall be delivered with up to three (3) complete sets of the latest edition of registered remote monitoring software with full manufacture's support. Each set shall consist of software on CD, DVD, or other suitable media approved by the Engineer, and a bound set of manuals containing loading and operating instruction. One copy of the software and support data shall be delivered to the Agency in charge of system operation, if other than IDOT. One of these two sets will be provided to the Agency Signal Maintenance Contractor for use in monitoring the system. The approved manufacturer of equipment shall loan the District one master controller and two intersection controllers of the most recent models and the newest software version to be used for instructional purposes in addition to the equipment to be supplied for the Contract. The Contractor shall arrange to install a standard voice-grade dial-up telephone line to the master controller. This shall be accomplished through the following process utilizing District One staff. This telephone line may be coupled with a DSL line and a phone filter to isolate the dial-up line. An E911 address is required. The cabinet shall be provided with an Outdoor Network Interface for termination of the telephone service. It shall be mounted to the inside of the cabinet in a location suitable to provide access for termination of the telephone service at a later date. Full duplex communication between the master and its local controllers is recommended, but at this time not required. The data rate shall be 1200 baud minimum and shall be capable of speeds to 38,400 or above as technology allows. The controller, when installed in an Ethernet topology, may operate non-serial communications. The cabinet shall be equipped with a 9600 baud, auto dial/auto answer modem. It shall be a US robotics 33.6K baud rate or equal. As soon as practical or within one week after the contract has been awarded, the Contractor shall contact (via phone) the Administrative Support Manager in the District One Business Services Section at (847) 705-4011 to request a phone line installation. A follow-up fax transmittal to the Administrative Support Manager (847-705-4712) with all required information pertaining to the phone installation is required from the Contractor as soon as possible or within one week after the initial request has been made. A
copy of this fax transmittal must also be faxed by the Contractor to the Traffic Signal Systems Engineer at (847) 705-4089. The required information to be supplied on the fax shall include (but not limited to): A street address for the new traffic signal controller (or nearby address); a nearby existing telephone number; what type of telephone service is needed; the name and number of the Contractor's employee for the telephone company to contact regarding site work and questions. The usual time frame for the activation of the phone line is 4-6 weeks after the Business Services Section has received the Contractor supplied fax. It is, therefore, imperative that the phone line conduit and pull-string be installed by the Contractor in anticipation of this time frame. On jobs which include roadway widening in which the conduit cannot be installed until this widening is completed, the Contractor will be allowed to delay the phone line installation request to the Business Services Section until a point in time that is 4-6 weeks prior to the anticipated completion of the traffic signal work. The contractor shall provide the Administrative Support Manager with an expected installation date considering the 4-6 week processing time. The telephone line shall be installed and activated one month before the system final inspection. All costs associated with the telephone line installation and activation (not including the Contract specified conduit installation between the point of telephone service and the traffic signal controller cabinet) shall be paid for by the District One Business Services Section (i.e., this will be an IDOT phone number not a Contractor phone number). # UNINTERRUPTIBLE POWER SUPPLY. Add the following to Article 862.01 of the Standard Specifications: The UPS shall have the power capacity to provide normal operation of a signalized intersection that utilizes all LED type signal head optics, for a minimum of six hours. Add the following to Article 862.02 of the Standard Specifications: Materials shall be according to Article 1074.04 as modified in UNINTERRUPTIBLE POWER SUPPLY in Division 1000 of these specifications. Add the following to Article 862.03 of the Standard Specifications: The UPS shall additionally include, but not be limited to, a battery cabinet. The UPS shall provide reliable emergency power to the traffic signals in the event of a power failure or interruption. Revise Article 862.04 of the Standard Specifications to read: #### Installation. When a UPS is installed at an existing traffic signal cabinet, the UPS cabinet shall partially rest on the lip of the existing controller cabinet foundation and be secured to the existing controller cabinet by means of at least four (4) stainless steel bolts. The UPS cabinet shall be completely enclosed with the bottom and back constructed of the same material as the cabinet. When a UPS is installed at a new signal cabinet and foundation, it shall be mounted as shown on the plans. At locations where UPS is installed and Emergency Vehicle Priority System is in use, any existing incandescent confirmation beacons shall be replaced with LED lamps in accordance with the District One Emergency Vehicle Priority System specification at no additional cost to the contract. A concrete apron 67 in. x 50 in. x 5 in. (1702mm x 1270mm x 130mm) shall be provided on the side of the existing Type D Foundation, where the UPS cabinet is located. The concrete apron shall follow the District 1 Standard Traffic Signal Design Detail, Type D for Ground Mounted Controller Cabinet and UPS Battery Cabinet. The concrete apron shall follow Articles 424 and 202 of the Standard Specifications. This item shall include any required modifications to an existing traffic signal controller as a result of the addition of the UPS. Revise Article 862.05 of the Standard Specifications to read: #### Basis of Payment. This work will be paid for at the contract unit price per each for UNINTERRUPTIBLE POWER SUPPLY SPECIAL. Replacement of Emergency Vehicle Priority System confirmation beacons and any required modifications to the traffic signal controller shall be included in the cost of the UNINTERRUPTIBLE POWER SUPPLY SPECIAL item. The concrete apron and earth excavation required shall be included in the cast of the UNINTERRUPTIBLE POWER SUPPLY SPECIAL item. #### FIBER OPTIC CABLE. Add the following to Article 871.01 of the Standard Specifications: The Fiber Optic cable shall be installed in conduit or as specified on the plans. Add the following to Article 872.02 of the Standard Specifications: The control cabinet distribution enclosure shall be CSC FTWO12KST-W/O 12 Port Fiber Wall Enclosure or an approved equivalent. The fiber optic cable shall provide six fibers per tube for the amount of fibers called for in the Fiber Optic Cable pay item in the Contract. Fiber Optic cable may be gel filled or have an approved water blocking tape. Add the following to Article 871.04 of the Standard Specifications: A minimum of six multimode fibers from each cable shall be terminated with approved mechanical connectors at the distribution enclosure. Fibers not being used shall be labeled "spare." Fibers not attached to the distribution enclosure shall be capped and sealed. A minimum of 13.0 feet (4m) of extra cable length shall be provided for controller cabinets. The controller cabinet extra cable length shall be stored as directed by the Engineer. Add the following to Article 871.06 of the Standard Specifications: The distribution enclosure and all connectors will be included in the cost of the fiber optic cable. #### MAST ARM ASSEMBLY AND POLE. Revise Article 877.01 of the Standard Specifications to read: #### Description. This work shall consist of furnishing and installing a steel mast arm assembly and pole and a galvanized steel or extruded aluminum shroud for protection of the base plate. Revise Article 877.03 of the Standard Specifications: Mast arm assembly and pole shall be as follows. - (a) Steel Mast Arm Assembly and Pole and Steel Combination Mast Arm Assembly and Pole. The steel mast arm assembly and pole and steel combination mast arm assembly and pole shall consist of a traffic signal mast arm, a luminaire mast arm or davit (for combination pole only), a pole, and a base, together with anchor rods and other appurtenances. The configuration of the mast arm assembly, pole, and base shall be according to the details shown on the plans. - (1) Loading. The mast arm assembly and pole, and combination mast arm assembly and pole shall be designed for the loading shown on the Highway Standards or elsewhere on the plans, whichever is greater. The design shall be according to AASHTO "Standard Specification for Structural Supports for Highway Signs, Luminaries and Traffic Signals" 1994 Edition for 80 mph (130 km/hr) wind velocity. However, the arm-to-pole connection for tapered signal and luminaire arms shall be according to the "ring plate" detail as shown in Figure 11-1(f) of the 2002 Interim, to the AASHTO "Standard Specification for Structural Supports for Highway Signs, Luminaries and Traffic Signals" 2001 4th Edition. - (2) Structural Steel Grade. The mast arm and pole shall be fabricated according to ASTM A 595, Grade A or B, ASTM A 572 Grade 55, or ASTM A 1011 Grade 55 HSLAS Class 2. The base and flange plates shall be of structural steel according to AASHTO M 270 Grade 50 (M 270M Grade 345). Luminaire arms and trussed arms 15 ft (4.5 m) or less shall be fabricated from one steel pipe or tube size according to ASTM A 53 Grade B or ASTM A 500 Grade B or C. All mast arm assemblies, poles, and bases shall be galvanized according to AASHTO M 111. - (3) Fabrication. The design and fabrication of the mast arm assembly, pole, and base shall be according to the requirements of the Standard Specifications for Structural Supports for Highway Signs, Luminaires, and Traffic Signals published by AASHTO. The mast arm and pole may be of single length or sectional design. If section design is used, the overlap shall be at least 150 percent of the maximum diameter of the overlapping section and shall be assembled in the factory. The manufacturer will be allowed to slot the base plate in which other bolt circles may fit, providing that these slots do not offset the integrity of the pole. Circumferential welds of tapered arms and poles to base plates shall be full penetration welds. - (4) Shop Drawing Approval. The Contractor shall submit detailed drawings showing design materials, thickness of sections, weld sizes, and anchor rods to the Engineer for approval prior to fabrication. These drawings shall be at least 11 x 17 in. (275 x 425 mm) in size and of adequate quality for microfilming. All product data and shop drawings shall be submitted in electronic form on CD-ROM - (b) Anchor Rods. The anchor rods shall be ASTM F 1554 Grade 105, coated by the hot-dip galvanizing process according to AASHTO M 232, and shall be threaded a minimum of 7 1/2 in. (185 mm) at one end and have a bend at the other end. The first 12 in. (300 mm) at the threaded end shall be galvanized. Two nuts, one lock washer, and one flat washer shall be furnished with each anchor rod. All nuts and washers shall be galvanized. - (c) The galvanized steel or extruded aluminum shroud shall have dimensions similar to those detailed in the "District One Standard Traffic Signal Design Details." The shroud shall be installed such that it allow air to circulate throughout the mast arm but not allow infestation of insects or other animals, and such that it is not hazardous to probing fingers and feet. Add the following to Article 877.04 of the Standard Specifications: The shroud shall not be paid for separately but shall be included in the cost of the mast arm assembly and pole. #### **CONCRETE FOUNDATIONS.** Add the following to Article 878.03 of the Standard Specifications: All anchor bolts shall be according to Article 1006.09, with all anchor bolts
hot dipped galvanized a minimum of 12 in. (300 mm) from the threaded end. Concrete Foundations, Type "A" for Traffic Signal Posts shall provide anchor bolts with the bolt pattern specified within the "District One Standard Traffic Signal Design Details." All Type "A" foundations shall be a minimum depth of 48 inches (1220 mm). Concrete Foundations, Type "C" for Traffic Signal Cabinets with Uninterruptible Power Supply (UPS) cabinet installations shall be a minimum of 72 inches (1830 mm) long and 31 inches (790 mm) wide. All Type "C" foundations shall be a minimum depth of 48 inches (1220 mm). The concrete apron in front of the Type IV or V cabinet shall be 36 in. x 48 in. x 5 in. (915 mm X 1220 mm X 130 mm). The concrete apron in front of the UPS cabinet shall be 36 in. x 67 in. x 5 in. (915 mm X 1700 mm X 130 mm). Anchor bolts shall provide bolt spacing as required by the manufacturer. Concrete Foundations, Type "D" for Traffic Signal Cabinets shall be a minimum of 48 inches (1220 mm) long and 31 inches (790 mm) wide. All Type "D" foundations shall be a minimum depth of 48 inches (1220 mm). The concrete apron shall be 36 in. x 48 in. x 5 in. (910 mm X 1220 mm X 130 mm). Anchor bolts shall provide bolt spacing as required by the manufacturer. Concrete Foundations, Type "E" for Mast Arm and Combination Mast Arm Poles shall meet the current requirements listed in the Highway Standards. Foundations used for Combination Mast Arm Poles shall provide an extra 2-1/2 inch (65 mm) raceway. No foundation is to be poured until the Resident Engineer gives his/her approval as to the depth of the foundation. # <u>LIGHT EMITTING DIODE (LED) SIGNAL HEAD AND OPTICALLY PROGRAMMED LED</u> SIGNAL HEAD. Add the following to the first paragraph of Article 880.04 of the Standard Specifications: #### Basis of Payment. The price shall include furnishing the equipment described above, all mounting hardware and installing them in satisfactory operating condition. # LIGHT EMITING DIODE (LED), SIGNAL HEAD, RETROFIT #### Description. This work shall consist of retrofitting an existing polycarbonate traffic signal head with a traffic signal module, pedestrian signal module, and pedestrian countdown signal module, with light emitting diodes (LEDs) as specified in the plans. #### Materials. Materials shall be according to LIGHT EMITTING DIODE (LED) AND OPTICALLY PROGRAMMED LED SIGNAL HEAD, AND LIGHT EMITTING DIODE (LED) PEDESTRIAN SIGNAL HEAD in Divisions 880, 881 and 1000 of these specifications. Add the following to Article 880.04 of the Standard Specifications: # Basis of Payment. This item shall be paid for at the contract unit price each for SIGNAL HEAD, LED, RETROFIT, or PEDESTRIAN SIGNAL HEAD, LED, RETROFIT, for the type and number of polycarbonate signal heads, faces, and sections specified, which price shall be payment in full for furnishing the equipment described above including LED modules, all mounting hardware, and installing them in satisfactory operating condition. The type specified will indicate the number of faces and the method of mounting. #### LIGHT EMITTING DIODE (LED) PEDESTRIAN SIGNAL HEAD Add the following to the third paragraph of Article 881.03 of the Standard Specifications: No mixing of different types of pedestrian traffic signals or displays will be permitted. Add the following to Article 881.03 of the Standard Specifications: - (a) Pedestrian Countdown Signal Heads. - (1) Pedestrian Countdown Signal Heads shall not be installed at signalized intersections where traffic signals and railroad warning devices are interconnected. - (2) Pedestrian Countdown Signal Heads shall be 16 inch (406mm) x 18 inch (457mm), for single units with the housings glossy black polycarbonate. Connecting hardware and mounting brackets shall be polycarbonate (black). A corrosion resistant anti-seize lubricant shall be applied to all metallic mounting bracket joints, and shall be visible to the inspector at the signal turn-on. - (3) Each pedestrian signal LED module shall be fully MUTCD compliant and shall consist of double overlay message combining full LED symbols of an Upraised Hand and a Walking Person. "Egg Crate" type sun shields are not permitted. Numerals shall measure 9 inches (229mm) in height and easily identified from a distance of 120 feet (36.6m). Add the following to Article 881.04 of the Standard Specifications: #### Basis of Payment. The price shall include furnishing the equipment described above, all mounting hardwire and installing them in satisfactory operating condition. #### DETECTOR LOOP. Revise Section 886 of the Standard Specifications to read: #### Description. This work shall consist of furnishing and installing a detector loop in the pavement. #### Procedure. A minimum of seven (7) working days prior to the Contractor cutting loops, the Contractor shall have the proposed loop locations marked and contact the Area Traffic Signal Maintenance and Operations Engineer (847) 705-4424 to inspect and approve the layout. When preformed detector loops are installed, the Contractor shall have them inspected and approved prior to the pouring of the Portland cement concrete surface, using the same notification process as above. #### Installation. Loop detectors shall be installed according to the requirements of the "District One Standard Traffic Signal Design Details." Saw-cuts (homeruns on preformed detector loops) from the loop to the edge of pavement shall be made perpendicular to the edge of pavement when possible in order to minimize the length of the saw-cut (homerun on preformed detector loops) unless directed otherwise by the Engineer or as shown on the plan. The detector loop cable insulation shall be labeled with the cable specifications. Each loop detector lead-in wire shall be labeled in the handhole using a Panduit PLFIM water proof tag, or an approved equal, secured to each wire with nylon ties. Resistance to ground shall be a minimum of 100 mega-ohms under any conditions of weather or moisture. Inductance shall be more than 50 and less than 700 microhenries. Quality readings shall be more than 5. - (a) Type I. All loops installed in new asphalt pavement shall be installed in the binder course and not in the surface course. The edge of pavement, curb and handhole shall be cut with a 1/4 inch (6.3 mm) deep x 4 inches (100 mm) saw cut to mark location of each loop lead-in. - (b) Loop sealant shall be a two-component thixotropic chemically cured polyurethane either Chemque Q-Seal 295, Percol Elastic Cement AC Grade or an approved equal. The sealant shall be installed 1/8 inch (3 mm) below the pavement surface, if installed above the surface the overlap shall be removed immediately. - (c) Detector loop measurements shall include the saw cut and the length of the loop lead-in to the edge of pavement. The lead-in wire, including all necessary connections for proper operations, from the edge of pavement to the handhole, shall be included in the price of the detector loop. Unit duct, trench and backfill, and drilling of pavement or handholes shall be included in detector loop quantities. - (d) Preformed. This work shall consist of furnishing and installing a rubberized or crosslinked polyethylene heat resistant preformed traffic signal loop in accordance with the Standard Specifications, except for the following: - (e) Preformed detector loops shall be installed in new pavement constructed of Portland cement concrete using mounting chairs or tied to re-bar or the preformed detector loops may be placed in the sub-base. Loop lead-ins shall be extended to a temporary protective enclosure near the proposed handhole location. The protective enclosure shall provide sufficient protection from other construction activities and may be buried for additional protection. - (f) Handholes shall be placed next to the shoulder or back of curb when preformed detector loops enter the handhole. Non-metallic coilable duct, included in this pay item, shall be used to protect the preformed lead-ins from back of curb to the handhole. - (g) Preformed detector loops shall be factory assembled with ends capped and sealed against moisture and other contaminants. Homeruns and interconnects shall be pre-wired and shall be an integral part of the loop assembly. The loop configurations and homerun lengths shall be assembled for the specific application. The loop and homerun shall be constructed using 11/16 inch (17.2 mm) outside diameter (minimum), 3/8 inch (9.5 mm) inside diameter (minimum) Class A oil resistant synthetic cord reinforced hydraulic hose with 250 psi (1,720 kPa) internal pressure rating or a similarly sized XLPE cable jacket. Hose for the loop and homerun assembly shall be one continuous piece. No joints or splices shall be allowed in the hose except where necessary to connect homeruns or interconnects to the loops. This will provide maximum wire protection and loop system strength. Hose tee connections shall be heavy duty high temperature synthetic rubber. The tee shall be of proper size to attach directly to the hose, minimizing glue joints. The tee shall have the same flexible properties as the hose to insure that the whole assembly can conform to pavement movement and shifting without cracking or breaking. For XLPE jacketed preformed loops, all splice connections shall be soldered, sealed, and tested before being sealed in a high impact glass impregnated plastic splice enclosure. The wire used shall be #16 THWN stranded copper. The number of turns in the loop shall be application specific. Homerun wire pairs shall be twisted a minimum of four turns per foot. No wire splices will be allowed in the preformed loop assembly. The loop and homeruns shall be filled and sealed with a flexible sealant to insure complete moisture blockage and further protect the wire. The preformed loops shall be constructed to allow a minimum of 6.5 feet of extra cable in the handhole. #### Method of Measurement. This work will be measured for
payment in feet (meters) in place. Type I detector loop will be measured along the sawed slot in the pavement containing the loop and lead-in, rather than the actual length of the wire. Preformed detector loops will be measured along the detector loop and lead-in embedded in the pavement, rather than the actual length of the wire. # Basis of Payment. This work shall be paid for at the contract unit price per foot (meter) for DETECTOR LOOP, TYPE I or PREFORMED DETECTOR LOOP as specified in the plans, which price shall be payment in full for furnishing and installing the detector loop and all related connections for proper operation. #### **EMERGENCY VEHICLE PRIORITY SYSTEM.** Revise Section 887 of the Standard Specifications to read: It shall be the Contractor's responsibility to contact the municipality or fire district to verify the brand of emergency vehicle pre-emption equipment to be installed prior to the contract bidding. The equipment must be completely compatible with all components of the equipment currently incuse by the Agency. All new installations shall be equipped with Confirmation Beacons as shown on the "District One Standard Traffic Signal Design Details." The Confirmation Beacon shall consist of a 6 watt Par 38 LED flood lamp with a 30 degree light spread, maximum 6 watt energy consumption at 120V, and a 2,000 hour warranty for each direction of pre-emption. The lamp shall have an adjustable mount with a weatherproof enclosure for cable splicing. All hardware shall be cast aluminum or stainless steel. Holes drilled into signal poles, mast arms, or posts shall require rubber grommets. In order to maintain uniformity between communities, the confirmation beacons shall indicate when the control equipment receives the pre-emption signal. The pre-emption movement shall be signalized by a flashing indication at the rate specified by Section 4L.01 of the "Manual on Uniform Traffic Control Devices," and other applicable sections of future editions. The stopped pre-empted movements shall be signalized by a continuous indication. All light operated systems shall include security and transit preemption software and operate at a uniform rate of 14.035 Hz ±0.002, or as otherwise required by the Engineer, and provide compatible operation with other light systems currently being operated in the District. This item shall include any required modifications to an existing traffic signal controller as a result of the addition of the EMERGENCY VEHICLE PRIORITY SYSTEM. #### Basis of Payment. The work shall be paid for at the contract unit price each for furnishing and installing LIGHT DETECTOR and LIGHT DETECTOR AMPLIFIER. Furnishing and installing the confirmation beacon shall be included in the cost of the Light Detector. Any required modifications to the traffic signal controller shall be included in the cost of the LIGHT DETECTOR AMPLIFIER. The preemption detector amplifier shall be paid for on a basis of (1) one each per intersection controller and shall provide operation for all movements required in the pre-emption phase sequence. # **TEMPORARY TRAFFIC SIGNAL INSTALLATION.** Revise Section 890 of the Standard Specifications to read: #### Description. This work shall consist of furnishing, installing, maintaining, and removing a temporary traffic signal installation as shown on the plans, including but not limited to temporary signal heads, emergency vehicle priority systems, interconnect, vehicle detectors, uninterruptible power supply, and signing. Temporary traffic signal controllers and cabinets interconnected to railroad traffic control devices shall be new. When temporary traffic signals will be operating within a county or local agency Traffic Management System, the equipment must be NTCIP compliant and compatible with the current operating requirements of the Traffic Management System. #### General. Only an approved equipment vendor will be allowed to assemble the temporary traffic signal cabinet. Also, an approved equipment vendor shall assemble and test a temporary railroad traffic signal cabinet. (Refer to the "Inspection of Controller and Cabinet" specification). A representative of the approved control equipment vendor shall be present at the temporary traffic signal turn-on inspection. # Construction Requirements. - (a) Controllers. - 1. Only controllers supplied by one of the District approved closed loop equipment manufacturers will be approved for use at temporary signal locations. All controllers used for temporary traffic signals shall be fully actuated NEMA microprocessor based with RS232 data entry ports compatible with existing monitoring software approved by IDOT District 1, installed in NEMA TS2 cabinets with 8 phase back panels, capable of supplying 255 seconds of cycle length and individual phase length settings up to 99 seconds. On projects with one lane open and two way traffic flow, such as bridge deck repairs, the temporary signal controller shall be capable of providing an adjustable all red clearance setting of up to 30 seconds in length. All controllers used for temporary traffic signals shall meet or exceed the requirements of Section 857 of the Standard Specifications with regards to internal time base coordination and preemption. All railroad interconnected temporary controllers and cabinets shall be new and shall satisfy the requirements of Article 857.02 of the Standard Specifications as modified herein. - 2. Only control equipment, including controller cabinet and peripheral equipment, supplied by one of the District approved closed loop equipment manufacturers will be approved for use at temporary traffic signal locations. All control equipment for the temporary traffic signal(s) shall be furnished by the Contractor unless otherwise stated in the plans. On projects with multiple temporary traffic signal installations, all controllers shall be the same manufacturer brand and model number with current software installed. - (b) Cabinets. All temporary traffic signal cabinets shall have a closed bottom made of aluminum alloy. The bottom shall be sealed along the entire perimeter of the cabinet base to ensure a water, dust and insect-proof seal. The bottom shall provide a minimum of two (2) 4 inch (100 mm) diameter holes to run the electric cables through. The 4 inch (100 mm) diameter holes shall have a bushing installed to protect the electric cables and shall be sealed after the electric cables are installed. - (c) Grounding. Grounding shall be provided for the temporary traffic signal cabinet meeting or exceeding the applicable portions of the National Electrical Code, Section 806 of the Standard Specifications and shall meet the requirements of the District 1 Traffic Signal Specifications for "Grounding of Traffic Signal Systems." - (d) Traffic Signal Heads. All traffic signal sections and pedestrian signal sections shall be 12 inches (300 mm). Traffic signal sections shall be LED with expandable view, unless otherwise approved by the Engineer. Pedestrian signal heads shall be Light Emitting Diode (LED) Pedestrian Countdown Signal Heads except when a temporary traffic signal is installed at an intersection interconnected with a railroad grade crossing. When a temporary traffic signal is installed at an intersection interconnected with a railroad grade crossing, Light Emitting Diode (LED) Pedestrian Signal Heads shall be furnished. The temporary traffic signal heads shall be placed as indicated on the temporary traffic signal plan or as directed by the Engineer. The Contractor shall furnish enough extra cable length to relocate heads to any position on the span wire or at locations illustrated on the plans for construction staging. The temporary traffic signal shall remain in operation during all signal head relocations. Each temporary traffic signal head shall have its own cable from the controller cabinet to the signal head. # (e) Interconnect. 竹 - 1. Temporary traffic signal interconnect shall be provided using fiber optic cable or wireless interconnect technology as specified in the plans. The Contractor may request, in writing, to substitute the fiber optic temporary interconnect indicated in the contract documents with a wireless interconnect. The Contractor must provide assurances that the radio device will operate properly at all times and during all construction staging. If approved for use by the Engineer, the Contractor shall submit marked-up traffic signal plans indicating locations of radios and antennas and installation details. If wireless interconnect is used, and in the opinion of the engineer, it is not viable, or if it fails during testing or operations, the Contractor shall be responsible for installing all necessary poles, fiber optic cable, and other infrastructure for providing temporary fiber optic interconnect at no cost to the contract. - 2. The existing system interconnect and phone lines are to be maintained as part of the Temporary Traffic Signal Installation specified for on the plan. The interconnect shall be installed into the temporary controller cabinet as per the notes or details on the plans. All labor and equipment required to install and maintain the existing interconnect as part of the Temporary Traffic Signal Installation shall be included in the item Temporary Traffic Signal Installation. When shown in the plans, temporary traffic signal interconnect equipment shall be furnished and installed. The temporary traffic signal interconnect shall maintain interconnect communications throughout the entire signal system for the duration of the project. - 3. Temporary wireless interconnect, complete. The radio interconnect system shall be compatible with Eagle or Econolite controller closed loop systems. This item shall include all temporary wireless interconnect components, complete, at the adjacent existing traffic signal(s) to provide a completely operational closed loop system. This item shall include all materials, labor and
testing to provide the completely operational closed loop system as shown on the plans. The radio interconnect system shall include the following components: - a. Rack or Shelf Mounted RS-232 Frequency Hopping Spread Spectrum (FHSS) Radio - b. Software for Radio Configuration (Configure Frequency and Hopping Patterns) - c. Antennas (Omni Directional or Yagi Directional) - d. Antenna Cables, LMR400, Low Loss. Max. 100-ft from controller cabinet to antenna - e. Brackets, Mounting Hardware, and Accessories Required for Installation - f. RS232 Data Cable for Connection from the radio to the local or master controller - g. All other components required for a fully functional radio interconnect system All controller cabinet modifications and other modifications to existing equipment that are required for the installation of the radio interconnect system components shall be included in this item. The radio interconnect system may operate at 900Mhz (902-928) or 2.4 Ghz depending on the results of a site survey. The telemetry shall have an acceptable rate of transmission errors, time outs, etc. comparable to that of a hardwire system. The proposed master controller and telemetry module shall be configured for use with the radio interconnect at a minimum rate of 9600 baud. The radio interconnect system shall include all other components required for a complete and fully functional telemetry system and shall be installed in accordance to the manufacturers recommendations. The following radio equipment is currently approved for use in Region One/District One: Encom Model 5100 and Intuicom Communicator II. (f) Emergency Vehicle Pre-Emption. All emergency vehicle preemption equipment (light detectors, light detector amplifiers, confirmation beacons, etc.) as shown on the temporary traffic signal plans shall be provided by the Contractor. It shall be the Contractor's responsibility to contact the municipality or fire district to verify the brand of emergency vehicle preemption equipment to be installed prior to the contract bidding. The equipment must be completely compatible with all components of the equipment currently in use by the Agency. All light operated systems shall operate at a uniform rate of 14.035 hz ±0.002, or as otherwise required by the Engineer, and provide compatible operation with other light systems currently being operated in the District. All labor and material required to install and maintain the Emergency Vehicle Preemption installation shall be included in the item Temporary Traffic Signal Installation. - (g) Vehicle Detection. All temporary traffic signal installations shall have vehicular detection installed as shown on the plans or as directed by the Engineer. Pedestrian push buttons shall be provided for all pedestrian signal heads/phases as shown on the plans or as directed by the Engineer. All approaches shall have vehicular detection provided by vehicle detection system as shown on the plans or as directed by the Engineer. Microwave vehicle sensors or video vehicle detection system shall be approved by IDOT prior to Contractor furnishing and installing. The Contractor shall install, wire, and adjust the alignment of the microwave vehicle sensor or video vehicle detection system in accordance to the manufacturer's recommendations and requirements. The Contractor shall be responsible for adjusting the alignment of the microwave vehicle sensor or video vehicle detection system for all construction staging changes and for maintaining proper alignment throughout the project. A representative of the approved control equipment vendor shall be present and assist the contractor in setting up and maintaining the microwave vehicle sensor or video vehicle detection system. An in-cabinet video monitor shall be provided with all video vehicle detection systems and shall be included in the item Temporary Traffic Signal Installation. - (h) Uninterruptible Power Supply. All temporary traffic signal installations shall have Uninterruptible Power Supply (UPS). The UPS cabinet shall be mounted to the temporary traffic signal cabinet and meet the requirements of Uninterruptible Power Supply in Divisions 800 and 1000 of these specifications. 4.7 - (i) Signs. All existing street name and intersection regulatory signs shall be removed from existing poles and relocated to the temporary signal span wire. If new mast arm assembly and pole(s) and posts are specified for the permanent signals, the signs shall be relocated to the new equipment at no extra cost. Any intersection regulatory signs that are required for the temporary traffic signal shall be provided as shown on the plans or as directed by the Engineer. Relocation, removing, bagging and installing the regulatory signs for the various construction stages shall be provided as shown on the plans or as directed by the Engineer. - (j) Energy Charges. The electrical utility energy charges for the operation of the temporary traffic signal installation shall be paid for by others if the installation replaces an existing signal. Otherwise charges shall be paid for under 109.05 of the Standard Specifications. - (k) Maintenance. Maintenance shall meet the requirements of the Standard OF Specifications and MAINTENANCE **EXISTING TRAFFIC** INSTALLATION in Division 800 of these specifications. Maintenance of temporary signals and of the existing signals shall be included in the cost of the TEMPORARY TRAFFIC SIGNAL INSTALLATION pay item. When temporary traffic signals are to be installed at locations where existing signals are presently operating, the Contractor shall be fully responsible for the maintenance of the existing signal installation as soon as he begins any physical work on the Contract or any portion thereof. In addition, a minimum of seven (7) days prior to assuming maintenance of the existing traffic signal installation(s) under this Contract, the Contractor shall request that the Resident Engineer contact the Bureau of Traffic Operations (847) 705-4424 for an inspection of the installation(s). - (I) Temporary Traffic Signals for Bridge Projects. Temporary Traffic Signals for bridge projects shall follow the State Standards, Standard Specifications, District One Traffic Signal Specifications and any plans for Bridge Temporary Traffic Signals included in the plans. The installation shall meet the Standard Specifications and all other requirements in this TEMPORARY TRAFFIC SIGNAL INSTALLATION specification. In addition all electric cable shall be aerially suspended, at a minimum height of 18 feet (5.5m) on temporary wood poles (Class 5 or better) of 45 feet (13.7 m) minimum height. The signal heads shall be span wire mounted or bracket mounted to the wood pole or as directed by the Engineer. The Controller cabinet shall be mounted to the wood pole as shown in the plans, or as directed by the Engineer. Microwave vehicle sensors or video vehicle detection system may be used in place of detector loops as approved by the Engineer. # (m) Temporary Portable Traffic Signal for Bridge Projects. - 1. Unless otherwise directed by the Engineer, temporary portable traffic signals shall be restricted to use on roadways of less than 8000 ADT that have limited access to electric utility service, shall not be installed on projects where the estimated need exceeds ten (10) weeks, and shall not be in operation during the period of November through March. The Contractor shall replace the temporary portable traffic signals with temporary span wire traffic signals noted herein at no cost to the contract if the bridge project or Engineer requires temporary traffic signals to remain in operation into any part of period of November through March. If, in the opinion of the engineer, the reliability and safety of the temporary portable traffic signal is not similar to that of a temporary span wire traffic signals with temporary span wire traffic signals noted herein at no cost to the contract. - 2. The controller and LED signal displays shall meet the Standard Specifications and all other requirements in this TEMPORARY TRAFFIC SIGNAL INSTALLATION specification. - 3. Work shall be according to Article 701.18(b) of the Standard Specifications except as noted herein. ## 4. General. - a. The temporary portable bridge traffic signals shall be trailer-mounted units. The trailer-mounted units shall be set up securely and level. Each unit shall be self-contained and consist of two signal heads. The left signal head shall be mounted on a mast arm capable of extending over the travel lane. Each unit shall contain a solar cell system to facilitate battery charging. There shall be a minimum of 12 days backup reserve battery supply and the units shall be capable of operating with a 120 V power supply from a generator or electrical service. - b. All signal heads located over the travel lane shall be mounted at a minimum height of 17 feet (5m) from the bottom of the signal back plate to the top of the road surface. All far right signal heads located outside the travel lane shall be mounted at a minimum height of 8 feet (2.5m) from the bottom of the signal back plate to the top of the adjacent travel lane surface. - c. The long all red intervals for the traffic signal controller shall be adjustable up to 250 seconds in one-second increments. - d. As an alternative to detector loops, temporary portable bridge traffic signals may be equipped with microwave sensors or other approved methods of vehicle detection and traffic actuation. - e. All portable traffic signal units shall be interconnected using hardwire communication cable. Radio communication equipment may be used only with the approval of the Engineer. If radio communication is used, a site analysis shall be completed to ensure that there is no interference present that would affect the traffic signal operation. The radio equipment shall meet all applicable FCC requirements. - f. The temporary portable bridge traffic signal system shall meet the
physical display and operational requirements of conventional traffic signals as specified in Part IV and other applicatble portions of the currently adopted version of the Manual on Uniform Traffic Control Devices (MUTCD) and the Illinois MUTCD. The signal system shall be designed to continuously operate over an ambient temperature range between -30 °F (-34 °C) and 120 °F (48 °C). When not being utilized to inform and direct traffic, portable signals shall be treated as nonoperating equipment according to Article 701.11: - g. Basis of Payment. This work will be paid for according to Article 701.20(c). #### Basis of Payment. This work shall be paid for at the contract unit price each for TEMPORARY TRAFFIC SIGNAL INSTALLATION, TEMPORARY BRIDGE TRAFFIC SIGNAL INSTALLATION, or TEMPORARY PORTABLE BRIDGE TRAFFIC SIGNAL INSTALLATION, the price of which shall include all costs for the modifications required for traffic staging, changes in signal phasing as required in the Contract plans, microwave vehicle sensors, video vehicle detection system, any maintenance or adjustment to the microwave vehicle sensors/video vehicle detection system, the temporary wireless interconnect system complete, temporary fiber optic interconnect system complete, all material required, the installation and complete removal of the temporary traffic signal. Each intersection will be paid for separately. ### REMOVE EXISTING TRAFFIC SIGNAL EQUIPMENT. Add the following to Article 895.05 of the Standard Specifications: The traffic signal equipment which is to be removed and is to become the property of the Contractor shall be disposed of outside the right-of-way at the Contractor's expense. All equipment to be returned to the State shall be delivered by the Contractor to the State's Traffic Signal Maintenance Contractor's main facility. The Contractor shall contact the State's Electrical Maintenance Contractor to schedule an appointment to deliver the equipment. No equipment will be accepted without a prior appointment. All equipment shall be delivered within 30 days of removing it from the traffic signal installation. The Contractor shall provide 5 copies of a list of equipment that is to remain the property of the State, including model and serial numbers, where applicable. The Contractor shall also provide a copy of the Contract plan or special provision showing the quantities and type of equipment. Controllers and peripheral equipment from the same location shall be boxed together (equipment from different locations may not be mixed) and all boxes and controller cabinets shall be clearly marked or labeled with the location from which they were removed. If equipment is not returned with these requirements, it will be rejected by the State's Electrical Maintenance Contractor. The Contractor shall be responsible for the condition of the traffic signal equipment from the time Contractor takes maintenance of the signal installation until the acceptance of a receipt drawn by the State's Electrical Maintenance Contractor indicating the items have been returned in good condition. The Contractor shall safely store and arrange for pick up or delivery of all equipment to be returned to agencies other than the State. The Contractor shall package the equipment and provide all necessary documentation as stated above. Traffic signal equipment which is lost or not returned to the Department for any reason shall be replaced with new equipment meeting the requirements of these Specifications at no cost to the contract. ### TRAFFIC SIGNAL PAINTING. ### Description. This work shall include surface preparation, powder type painted finish application and packaging of new galvanized steel traffic signal mast arm poles and posts assemblies. All work associated with applying the painted finish shall be performed at the manufacturing facility for the pole assembly or post or at a painting facility approved by the Engineer. Traffic signal mast arm shrouds and post bases shall also be painted the same color as the pole assemblies and posts. ## Surface Preparation. All weld flux and other contaminates shall be mechanically removed. The traffic mast arms and post assemblies shall be degreased, cleaned, and air dried to assure all moisture is removed. ### Painted Finish. All galvanized exterior surfaces shall be coated with a urethane or triglycidyl isocyanurate (TGIC) polyester powder to a dry film thickness of 2.0 mils. Prior to application, the surface shall be mechanically etched by brush blasting (Ref. SSPC-SP7) and the zinc coated substrate preheated to 450 °F for a minimum one (1) hour. The coating shall be electrostatically applied and cured by elevating the zinc-coated substrate temperature to a minimum of 400 °F. The finish paint color shall be one of the manufacturer's standard colors and shall be as selected by the local agency responsible for paint costs. The Contractor shall confirm, in writing, the color selection with the local responsible agency and provide a copy of the approval to the Engineer and a copy of the approval shall be included in the material catalog submittal. Painting of traffic signal heads, pedestrian signal heads and controller cabinets is not included in this pay item. Any damage to the finish after leaving the manufacturer's facility shall be repaired to the satisfaction of the Engineer using a method recommended by the manufacturer and approved by the Engineer. If while at the manufacturer's facility the finish is damaged, the finish shall be re-applied at no cost to the contract. #### Warranty. The Contractor shall furnish in writing to the Engineer, the paint manufacturer's standard warranty and certification that the paint system has been properly applied. # Packaging. Prior to shipping, the poles and posts shall be wrapped in ultraviolet-inhibiting plastic foam or rubberized foam. ### Basis of Payment. This work shall be paid for at the contract unit price each for PAINT NEW MAST ARM AND POLE, UNDER 40 FEET (12.19 METER), PAINT NEW MAST ARM AND POLE, 40 FEET (12.19 METER) AND OVER, PAINT NEW COMBINATION MAST ARM AND POLE, UNDER 40 FEET (12.19 METER), PAINT NEW COMBINATION MAST ARM AND POLE, 40 FEET (12.19 METER) AND OVER, or PAINT NEW TRAFFIC SIGNAL POST of the length specified, which shall be payment in full for painting and packaging the traffic signal mast arm poles and posts described above including all shrouds, bases and appurtenances. ### **ILLUMINATED STREET NAME SIGN** #### Description This work shall consist of furnishing and installing a LED internally illuminated street name sign. #### Materials. Materials shall be in accordance with ILLUMINATED STREET NAME SIGN in Division 1000 of these specifications. ### Installation. The sign can be mounted on most steel mast arm poles. Mounting on aluminum mast arm pole requires supporting structural calculations. Some older or special designed steel mast arm poles may require structural evaluation to assure that construction of the mast arm pole is adequate for the proposed additional loading. Structural calculations and other supporting documentation as determined by the Engineer shall be provided by the contractor for review by the Department. The sign shall be located on a steel traffic signal mast arm no further than 8-feet from the center of the pole to the center of the sign at a height of between 16 to 18-feet above traveled pavement. Mounting hardware shall be Pelco model SE-5015, or approved equal, utilizing stainless steel components. Signs shall be installed such that they are not energized when traffic signals are powered by an alternate energy source such as a generator or uninterruptible power supply (UPS). The signs shall be connected to the generator or UPS bypass circuitry. #### Basis of Payment. This work will be paid for at the contract unit price each for ILLUMINATED STREET NAME SIGN, of the length specified which shall be payment in full for furnishing and installing the LED internally illuminated street sign, complete with circuitry and mounting hardware including photo cell, circuit breaker, fusing, relay, connections and cabling as shown on the plans for proper operation and installation. #### RE-OPTIMIZE TRAFFIC SIGNAL SYSTEM. ## Description. This work shall consist of re-optimizing a closed loop traffic signal system according to the following Levels of work. LEVEL I applies when improvements are made to an existing signalized intersection within an existing closed loop traffic signal system. The purpose of this work is to integrate the improvements to the subject intersection into the signal system while minimizing the impacts to the existing system operation. This type of work would be commonly associated with the addition of signal phases, pedestrian phases, or improvements that do not affect the capacity at an intersection. LEVEL II applies when improvements are made to an existing signalized intersection within an existing closed loop traffic signal system and detailed analysis of the intersection operation is desired by the engineer, or when a new signalized or existing signalized intersection is being added to an existing system, but optimization of the entire system is not required. The purpose of this work is to optimize the subject intersection, while integrating it into the existing signal system with limited impact to the system operations. This item also includes an evaluation of the overall system operation, including the traffic responsive program. For the purposes of re-optimization work, an intersection shall include all traffic movements operated by the subject controller and cabinet. After the signal improvements are completed, the signal shall be re-optimized as specified by an approved Consultant who has previous experience in optimizing Closed Loop Traffic Signal Systems for District One of the Illinois Department of Transportation. The Contractor shall contact the Traffic Signal Engineer at (847) 705-4424 for a listing of
approved Consultants. Traffic signal system optimization work, including fine-tuning adjustments of the optimized system, shall follow the requirements stated in the most recent IDOT District 1 SCAT Guidelines, except as note herein. A listing of existing signal equipment, interconnect information, phasing data, and timing patterns may be obtained from the Department, if available and as appropriate. The existing SCAT Report is available for review at the District One office and if the Consultant provides blank computer disks, copies of computer simulation files for the existing optimized system and a timing database that includes intersection displays will be made for the Consultant. The Consultant shall confer with the Traffic Signal Engineer prior to optimizing the system to determine if any extraordinary conditions exist that would affect traffic flows in the vicinity of the system, in which case, the Consultant may be instructed to wait until the conditions return to normal or to follow specific instructions regarding the optimization. # (a) LEVEL I Re-Optimization - 1. The following tasks are associated with LEVEL I Re-Optimization. - a. Appropriate signal timings shall be developed for the subject intersection and existing timings shall be utilized for the rest of the intersections in the system. - b. Proposed signal timing plan for the new or modified intersection(s) shall be forwarded to IDOT for review prior to implementation. - c. Consultant shall conduct on-site implementation of the timings at the turn-on and make fine-tuning adjustments to the timings of the subject intersection in the field to alleviate observed adverse operating conditions and to enhance operations. - 2. The following deliverables shall be provided for LEVEL I Re-Optimization. - a. Consultant shall furnish to IDOT a cover letter describing the extent of the reoptimization work performed. - b. Consultant shall furnish an updated intersection graphic display for the subject intersection to IDOT and to IDOT's Traffic Signal Maintenance Contractor. # (b) LEVEL II Re-Optimization - 1. In addition to the requirements described in the LEVEL I Re-Optimization above, the following tasks are associated with LEVEL II Re-Optimization. - a. Traffic counts shall be taken at the subject intersection after the traffic signals are approved for operation by the Area Traffic Signal Operations Engineer. Manual turning movement counts shall be conducted from 6:30 a.m. to 9:30 a.m., 11:00 a.m. to 1:00 p.m., and 3:30 p.m. to 6:30 p.m. on a typical weekday from midday Monday to midday Friday. The turning movement counts shall identify cars, and single-unit, multi-unit heavy vehicles, and transit buses. - As necessary, the intersections shall be re-addressed and all system detectors reassigned in the master controller according to the current standard of District One. - c. Traffic responsive program operation shall be evaluated to verify proper pattern selection and lack of oscillation and a report of the operation shall be provided to IDOT. - 2. The following deliverables shall be provided for LEVEL II Re-Optimization. - a. Consultant shall furnish to IDOT one (1) copy of a technical memorandum for the optimized system. The technical memorandum shall include the following elements: - (1) Brief description of the project - (2) Printed copies of the analysis output from Synchro (or other appropriate, approved optimization software file) - (3) Printed copies of the traffic counts conducted at the subject intersection - b. Consultant shall furnish to IDOT two (2) CDs for the optimized system. The CDs shall include the following elements: - (1) Electronic copy of the technical memorandum in PDF format - (2) Revised Synchro files (or other appropriate, approved optimization software file) including the new signal and the rest of the signals in the closed loop system - (3) Traffic counts conducted at the subject intersection - (4) New or updated intersection graphic display file for the subject intersection - (5) The CD shall be labeled with the IDOT system number and master location, as well as the submittal date and the consultant logo. The CD case shall include a clearly readable label displaying the same information securely affixed to the side and front. #### Basis of Payment. This work shall be paid for at the contract unit price each for RE-OPTIMIZE TRAFFIC SIGNAL SYSTEM – LEVEL I or RE-OPTIMIZE TRAFFIC SIGNAL SYSTEM – LEVEL II, which price shall be payment in full for performing all work described herein per intersection. Following completion of the timings and submittal of specified deliverables, 100 percent of the bid price will be paid. Each intersection will be paid for separately. ### OPTIMIZE TRAFFIC SIGNAL SYSTEM. #### Description. This work shall consist of optimizing a closed loop traffic signal system. OPTIMIZE TRAFFIC SIGNAL SYSTEM applies when a new or existing closed loop traffic signal system is to be optimized and a formal Signal Coordination and Timing (SCAT) Report is to be prepared. The purpose of this work is to improve system performance by optimizing traffic signal timings, developing a time of day program and a traffic responsive program. After the signal improvements are completed, the signal system shall be optimized as specified by an approved Consultant who has previous experience in optimizing Closed Loop Traffic Signal Systems for District One of the Illinois Department of Transportation. The Contractor shall contact the Traffic Signal Engineer at (847) 705-4424 for a listing of approved Consultants. Traffic signal system optimization work, including fine-tuning adjustments of the optimized system, shall follow the requirements stated in the most recent IDOT District 1 SCAT Guidelines, except as note herein. A listing of existing signal equipment, interconnect information, phasing data, and timing patterns may be obtained from the Department, if available and as appropriate. The existing SCAT Report is available for review at the District One office and if the Consultant provides blank computer disks, copies of computer simulation files for the existing optimized system and a timing database that includes intersection displays will be made for the Consultant. The Consultant shall confer with the Traffic Signal Engineer prior to optimizing the system to determine if any extraordinary conditions exist that would affect traffic flows in the vicinity of the system, in which case, the Consultant may be instructed to wait until the conditions return to normal or to follow specific instructions regarding the optimization. - (a) The following tasks are associated with OPTIMIZE TRAFFIC SIGNAL SYSTEM. - 1. Appropriate signal timings and offsets shall be developed for each intersection and appropriate cycle lengths shall be developed for the closed loop signal system. - 2. Traffic counts shall be taken at all intersections after the permanent traffic signals are approved for operation by the Area Traffic Signal Operations Engineer. Manual turning movement counts shall be conducted from 6:30 a.m. to 9:30 a.m., 11:00 a.m. to 1:00 p.m., and 3:30 p.m. to 6:30 p.m. on a typical weekday from midday Monday to midday Friday. The turning movement counts shall identify cars, and single-unit and multi-unit heavy vehicles. - 3. As necessary, the intersections shall be re-addressed and all system detectors reassigned in the master controller according to the current standard of District One. - 4. A traffic responsive program shall be developed, which considers both volume and occupancy. A time-of-day program shall be developed for used as a back-up system. - 5. Proposed signal timing plan for the new or modified intersection shall be forwarded to IDOT for review prior to implementation. - Consultant shall conduct on-site implementation of the timings and make fine-tuning adjustments to the timings in the field to alleviate observed adverse operating conditions and to enhance operations. - 7. Speed and delay studies shall be conducted during each of the count periods along the system corridor in the field before and after implementation of the proposed timing plans for comparative evaluations. These studies should utilize specialized electronic timing and measuring devices. - (b) The following deliverables shall be provided for OPTIMIZE TRAFFIC SIGNAL SYSTEM. - 1. Consultant shall furnish to IDOT one (1) copy of a SCAT Report for the optimized system. The SCAT Report shall include the following elements: # Cover Page in color showing a System Map ## **Figures** - 1. System overview map showing system number, system schematic map with numbered system detectors, oversaturated movements, master location, system phone number, cycle lengths, and date of completion. - 2. General location map in color showing signal system location in the metropolitan area - 3. Detail system location map in color showing cross street names and local controller addresses. - 4. Controller sequence showing controller phase sequence diagrams. # **Table of Contents** # Tab 1: Final Report - 1. Project Overview - 2. System and Location Description (Project specific) - 3. Methodology - 4. Data Collection - 5. Data Analysis and Timing Plan Development - 6. Implementation - a. Traffic Responsive Programming (Table of TRP vs. TOD Operation) - 7. Evaluation - a. Speed and Delay runs ## Tab 2. Turning Movement Counts 1. Turning Movement Counts (Showing turning movement counts in the intersection diagram for each period, including truck percentage) ## Tab 3. Synchro Analysis - 1. AM: Time-Space diagram in color, followed by intersection Synchro report (Timing report) summarizing the implemented timings. - 2. Midday: same as AM - 3. PM: same as AM ## Tab 4: Speed, Delay Studies - 1. Summary of before and after runs results in two (2) tables showing travel time and delay time. - 2. Plot of the before and after runs diagram for each direction and time period. ### Tab 5: Environmental
Report Environmental impact report including gas consumption, NO2, HCCO, improvements. #### Tab 6: Electronic Files - 1. Two (2) CDs for the optimized system. The CDs shall include the following elements: - a. Electronic copy of the SCAT Report in PDF format - b. Copies of the Synchro files for the optimized system - c. Traffic counts for the optimized system - d. New or updated intersection graphic display files for each of the system intersections and the system graphic display file including system detector locations and addresses. ### Basis of Payment. The work shall be paid for at the contract unit each for OPTIMIZE TRAFFIC SIGNAL SYSTEM, which price shall be payment in full for performing all work described herein for the entire traffic signal system. Following the completion of traffic counts, 25 percent of the bid price will be paid. Following the completion of the Synchro analysis, 25 percent of the bid price will be paid. Following the setup and fine tuning of the timings, the speed-delay study, and the TRP programming, 25 percent of the bid price will be paid. The remaining 25 percent will be paid when the system is working to the satisfaction of the engineer and the report and CD have been submitted. # **TEMPORARY TRAFFIC SIGNAL TIMINGS** #### Description. This work shall consist of developing and maintaining appropriate traffic signal timings for the specified intersection for the duration of the temporary signalized condition, as well as impact to existing traffic signal timings caused by detours or other temporary conditions. All timings and adjustments necessary for this work shall be performed by an approved Consultant who has previous experience in optimizing Closed Loop Traffic signal Systems for District One of the Illinois Department of Transportation. The Contractor shall contact the Traffic Signal Engineer at (847) 705-4424 for a listing of approved Consultants. The following tasks are associated with TEMPORARY TRAFFIC SIGNAL TIMINGS. - (a) Consultant shall attend temporary traffic signal inspection (turn-on) and/or detour meeting and conduct on-site implementation of the traffic signal timings. Make fineturning adjustments to the timings in the field to alleviate observed adverse operating conditions and to enhance operations. - (b) Consultant shall provide monthly observation of traffic signal operations in the field. - (c) Consultant shall provide on-site consultation and adjust timings as necessary for construction stage changes, temporary traffic signal phase changes, and any other conditions affecting timing and phasing, including lane closures, detours, and other construction activities. - (d) Consultant shall make timing adjustments and prepare comment responses as directed by the Area Traffic Signal Operations Engineer. ## Basis of Payment. The work shall be paid for at the contract unit price each for TEMPORARY TRAFFIC SIGNAL TIMINGS, which price shall be payment in full for performing all work described herein per intersection. When the temporary traffic signal installation is turned on and/or detour implemented, 50 percent of the bid price will be paid. The remaining 50 percent of the bid price will be paid following the removal of the temporary traffic signal installation and/or detour. # MODIFYING EXISTING CONTROLLER CABINET. The work shall consist of modifying an existing controller cabinet as follows: - (a) Uninterruptible Power Supply (UPS). The addition of uninterruptible power supply (UPS) to an existing controller cabinet could require the relocation of the existing controller cabinet items to allow for the installation of the uninterruptible power supply (UPS) components inside the existing controller cabinet as outlined under Sections 862 and 1074.04 of the Standard Specifications. - (b) Light Emitting Diode (LED) Signal Heads, Light Emitting Diode (LED) Optically Programmed Signal Heads and Light Emitting Diode (LED) Pedestrian Signal Heads. The contractor shall verify that the existing load switches meet the requirements of Section 1074.03(5)(b)(2) of the Standard Specifications and the recommended load requirements of the light emitting diode (LED) signal heads that are being installed at the existing traffic signal. If any of the existing load switches do not meet these requirements, they shall be replaced, as directed by the Engineer. - (c) Light Emitting Diode (LED), Signal Head, Retrofit. The contractor shall verify that the existing load switches meet the requirements of Section 1074.03(2) of the Standard Specifications and the recommended load requirements of light emitting diode (LED) traffic signal modules, pedestrian signal modules, and pedestrian countdown signal modules as specified in the plans. If any of the existing load switches do not meet these requirements, they shall be replaced, as directed by the Engineer. ## Basis of Payment. Modifying an existing controller cabinet will be paid for at the contract unit price per each for MODIFY EXISTING CONTROLLER CABINET. This shall include all material and labor required to complete the work as described above, the removal and disposal of all items removed from the controller cabinet, as directed by the Engineer. The equipment for the Uninterruptible Power Supply (UPS) and labor to install it in the existing controller cabinet shall be included in the pay item Uninterruptible Power Supply. Modifying an existing controller will be paid for at the contract unit price per each for MODIFY EXISTING CONTROLLER, per Sections 895.04 and 895.08 of the Standard Specifications. # **DIVISION 1000 MATERIALS** # PEDESTRIAN PUSH-BUTTON. Revise Article 1074.02(a) of the Standard Specifications to read: The pedestrian push-button housing shall be constructed of aluminum alloy according to ASTM B 308 6061-T6 and powder coated yellow, unless otherwise noted on the plans. The housing shall be furnished with suitable mounting hardware. Revise Article 1074-02(e) of the Standard Specifications to read: Stations shall be designed to be mounted directly to a post, mast arm pole or wood pole. The station shall be aluminum and shall accept a 3 inch (75mm) round push-button assembly and a regulatory pedestrian instruction sign according to MUTCD, sign series R10-3e 9 x 15 inch sign with arrow(s) for a count-down pedestrian signal. The pedestrian station size without count-down pedestrian signals shall accommodate a MUTCD sign series R10-3b or R10-3d 9 x 12 inch sign with arrow(s). Add the following to Article 1074.02(a) of the Standard Specifications: (f) Location. Pedestrian push-buttons and stations shall be mounted directly to a post, mast arm pole or wood pole as shown on the plans and shall be fully accessible from a paved or concrete surface. See the District's Detail sheets for orientation and mounting details. # CONTROLLER CABINET AND PERIPHERAL EQUIPMENT. Add the following to Article 1074.03 of the Standard Specifications: - (a) (6) Cabinets shall be designed for NEMA TS2 Type 1 operation. All cabinets shall be pre-wired for a minimum of eight (8) phases of vehicular, four (4) phases of pedestrian and four (4) phases of overlap operation. - (b) (5) Cabinets Provide 1/8" (3.2 mm) thick unpainted aluminum alloy 5052-H32. The surface shall be smooth, free of marks and scratches. All external hardware shall be stainless steel. - (b) (6) Controller Harness Provide a TS2 Type 2 "A" wired harness in addition to the TS2 Type 1 harness. - (b) (7) Surge Protection Plug-in type EDCO SHA-1250 or Atlantic/Pacific approved equal. - (b) (8) BIU Containment screw required. - (b) (9) Transfer Relays Solid state or mechanical flash relays are acceptable. - (b) (10) Switch Guards All switches shall be guarded. - (b) (11) Heating One (1) 200 watt, thermostatically-controlled, Hoffman electric heater, or approved equivalent. - (b) (12) Lighting One (1) LED Panel shall be placed inside the cabinet top panel and one (1) LED Panel shall be placed on each side of the pull-out drawer/shelf assembly located beneath the controller support shelf. The LED Panels shall be controlled by a wall switch. Relume Traffic Control Box LED Panels and power supply or approved equivalent. - (b) (13) The cabinet shall be equipped with a pull-out drawer/shelf assembly. A 1 ½ inch (38mm) deep drawer shall be provided in the cabinet, mounted directly beneath the controller support shelf. The drawer shall have a hinged top cover and shall be capable of accommodating one (1) complete set of cabinet prints and manuals. This drawer shall support 50 lbs. (23 kg) in weight when fully extended. The drawer shall open and close smoothly. Drawer dimensions shall make maximum use of available depth offered by the controller shelf and be a minimum of 24 inches (610mm) wide. - (b) (14) Plan & Wiring Diagrams 12" x 16" (3.05mm x 4.06mm) moisture sealed container attached to door. - (b) (15) Detector Racks Fully wired and labeled for four (4) channels of emergency vehicle pre-emption and sixteen channels (16) of vehicular operation. - (b) (16) Field Wiring Labels All field wiring shall be labeled. - (b) (17) Field Wiring Termination Approved channel lugs required. - (b) (18) Power Panel Provide a nonconductive shield. - (b) (19) Circuit Breaker The circuit breaker shall be sized for the proposed load but shall not be rated less than 30 amps. - (b) (20) Police Door Provide wiring and termination for plug in manual phase advance switch. - (b) (21) Railroad Pre-Emption Test Switch Eaton 8830K13 SHA 1250 or equivalent. ## RAILROAD, FULL-ACTUATED CONTROLLER AND CABINET. Controller shall comply with Article 1073.01 as amended in these Traffic Signal Special Provisions. Controller Cabinet and Peripheral Equipment shall comply with Article 1074.03 as amended in these Traffic Signal Special Provisions. Add the following to Articles 1073.01 (c) (2) and 1074.03 (a) (5) (e) of the Standard Specifications: Controllers and cabinets shall be new and NEMA TS2 Type 1 design. A method of monitoring
and/or providing redundancy to the railroad preemptor input to the controller shall be included as a component of the Railroad, Full Actuated Controller and Cabinet installation and be verified by the traffic signal equipment supplier prior to installation. Railroad interconnected controllers and cabinets shall be assembled only by an approved traffic signal equipment supplier. All railroad interconnected (including temporary railroad interconnect) controllers and cabinets shall be new, built, tested and approved by the controller equipment vendor, in the vendor's District One facility, prior to field installation. The vendor shall provide the technical equipment and assistance as required by the Engineer to fully test this equipment. ## UNINTERRUPTIBLE POWER SUPPLY (UPS). Revise Article 1074.04(a)(1) of the Standard Specifications to read: The UPS shall be line interactive and provide voltage regulation and power conditioning when utilizing utility power. The UPS shall be sized appropriately for the intersection's normal traffic signal operating connected load, plus 20 percent (20%). The total connected traffic signal load shall not exceed the published ratings for the UPS. The UPS shall provide a minimum of six (6) hours of normal operation run-time for signalized intersections with LED type signal head optics at 77 °F (25 °C) (minimum 700 W/1000 VA active output capacity, with 90 percent minimum inverter efficiency). Revise the first paragraph of Article 1074.04(a)(3) of the Standard Specifications to read: The UPS shall have a minimum of four (4) sets of normally open (NO) and normally closed (NC) single-pole double-throw (SPDT) relay contact closures, available on a panel mounted terminal block or locking circular connectors, rated at a minimum 120 V/1 A, and labeled so as to identify each contact according to the plans. Revise Article 1074.04(a)(10) of the Standard Specifications to read: The UPS shall be compatible with the District's approved traffic controller assemblies utilizing NEMA TS 1 or NEMA TS 2 controllers and cabinet components for full time operation. Revise Article 1074.04(a)(17) of the Standard Specifications to read: When the intersection is in battery backup mode, the UPS shall bypass all internal cabinet lights, ventilation fans, cabinet heaters, service receptacles, any lighted street name signs, any automated enforcement equipment and any other devices directed by the Engineer. Revise Article 1074.04(b)(2)b of the Standard Specifications to read: Batteries, inverter/charger and power transfer relay shall be housed in a separate NEMA Type 3R cabinet. The cabinet shall be Aluminum alloy, 5052-H32, 0.125-inch thick and have a natural mill finish. Revise Article 1074.04(b)(2)c of the Standard Specifications to read: No more than three batteries shall be mounted on individual shelves for a cabinet housing six batteries and no more than four batteries per shelf for a cabinet housing eight batteries. Revise Article 1074.04(b)(2)e of the Standard Specifications to read: The battery cabinet housing shall have the following nominal outside dimensions: a width of 25 in. (785 mm), a depth of 16 in. (440 mm), and a height of 41 to 48 in. (1.1 to 1.3 m). Clearance between shelves shall be a minimum of 10 in. (250 mm). ## UPS End of paragraph 1074.04(b) (2)e The door shall be equipped with a two position doorstop, one a 90° and one at 120°. Revise Article 1074.04(b)(2)g of the Standard Specifications to read: The door shall open to the entire cabinet, have a neoprene gasket, an Aluminum continuous piano hinge with stainless steel pin, and a three point locking system. The cabinet shall be provided with a main door lock which shall operate with a traffic industry conventional No. 2 key. Provisions for padlocking the door shall be provided. Add the following to Article 1074.04(b)(2) of the Standard Specifications: The battery cabinet shall have provisions for an external generator connection. Add the following to Article 1074.04(c) of the Standard Specifications: - (8) The UPS shall include a tip or kill switch installed in the battery cabinet, which shall completely disconnect power from the UPS when the switch is manually activated. - (9) The UPS shall incorporate a flanged electric generator inlet for charging the batteries and operating the UPS. The generator connector shall be male type, twist-lock, rated as 15A, 125VAC with a NEMA L5-15P configuration and weatherproof lift cover plate (Hubbell model HBL4716C or approved equal). Access to the generator inlet shall be from a secured weatherproof lift cover plate or behind a locked battery cabinet police panel. ## Battery System. Revise Article 1074.04(d)(3) of the Standard Specifications to read: All batteries supplied in the UPS shall be either gel cell or AGM type, deep cycle, completely sealed, prismatic leadcalcium based, silver alloy, valve regulated lead acid (VRLA) requiring no maintenance. All batteries in a UPS installation shall be the same type; mixing of gel cell and AGM types within a UPS installation is not permitted. Revise Article 1074.04(d)(4) of the Standard Specifications to read: Batteries shall be certified by the manufacturer to operate over a temperature range of -13 to 160 °F (-25 to + 71 °C) for gel cell batteries and -40 to 140 °F (-40 to + 60 °C) for AGM type batteries. Add the following to Article 1074.04(d) of the Standard Specifications: (9) The UPS shall consist of an even number of batteries that are capable of maintaining normal operation of the signalized intersection for a minimum of six hours. Calculations shall be provided showing the number of batteries of the type supplied that are needed to satisfy this requirement. A minimum of four batteries shall be provided. Add the following to the Article 1074.04 of the Standard Specifications: (e) Warranty. The warranty for an uninterruptible power supply (UPS) shall cover a minimum of two years from date the equipment is placed in operation; however, the batteries of the UPS shall be warranted for full replacement for a minimum of five years from the date the traffic signal and UPS are placed into service. ### **ELECTRIC CABLE.** Delete "or stranded, and No. 12 or" from the last sentence of Article 1076.04 (a) of the Standard Specifications. Add the following to the Article 1076.04(d) of the Standard Specifications: Service cable may be single or multiple conductor cable. ## TRAFFIC SIGNAL POST. Add the following to Article 1077.01 (d) of the Standard Specifications: All posts and bases shall be steel and hot dipped galvanized. If the Department approves painting, powder coating by the manufacturer will be required over the galvanization in accordance with TRAFFIC SIGNAL PAINTING in Division 800 of these specifications. ## PEDESTRIAN PUSH-BUTTON POST. Add the following to Article 1077.02(b) of the Standard Specifications: All posts and bases shall be steel and hot-dipped galvanized. If the Department approves painting, powder coating by the manufacturer will be required over the galvanization in accordance with Traffic Signal Painting in Division 800 of these specifications. ### MAST ARM ASSEMBLY AND POLE. Add the following to Article 1077.03 (a) of the Standard Specifications: Traffic signal mast arms shall be one piece construction, unless otherwise approved by the Engineer. All poles shall be galvanized. If the Department approves painting, powder coating by the manufacturer will be required over the galvanization in accordance with with TRAFFIC SIGNAL PAINTING in Division 800 of these specifications. The shroud shall be of sufficient strength to deter pedestrian and vehicular damage. The shroud shall be constructed and designed to allow air to circulate throughout the mast arm but not allow infestation of insects or other animals, and such that it is not hazardous to probing fingers and feet. All mounting hardware shall be stainless steel. ## LIGHT EMITTING DIODE (LED) TRAFFIC SIGNAL HEAD. Add the following to Section 1078 of the Standard Specifications: ### General. All signal and pedestrian heads shall provide 12" (300 mm) displays with glossy yellow or black polycarbonate housings. All head housings shall be the same color (yellow or black) at the intersection. For new signalized intersections and existing signalized intersections where all signal and/or pedestrian heads are being replaced, the proposed head housings shall be black. Where only selected heads are being replaced, the proposed head housing color (yellow or black) shall match existing head housings. Connecting hardware and mounting brackets shall be polycarbonate (black). A corrosion resistant anti-seize lubricant shall be applied to all metallic mounting bracket joints, and shall be visible to the inspector at the signal turn-on. Post top mounting collars are required on all posts, and shall be constructed of the same material as the brackets. Pedestrian signal heads shall be furnished with the international symbolic "Walking Person" and "Upraised Palm" displays. Egg crate sun shields are not permitted. Signal heads shall be positioned according to the "District One Standard Traffic Signal Design Details." LED signal heads (All Face and Section Quantities), (All Mounting Types) shall conform fully to the requirements of Articles 1078.01 and 1078.02 of the Standard Specifications amended herein. 1. The LED signal modules shall be replaced or repaired if an LED signal module fails to function as intended due to workmanship or material defects within the first 60 months from the date of delivery. LED signal modules which exhibit luminous intensities less than the minimum values specified in Table 1 of the ITE Vehicle Traffic Control Signal Heads: Light Emitting Diode (LED) Circular Signal Supplement (June 27, 2005) [VTSCH], or applicable successor ITE specifications, or show signs of entrance of moisture or contaminants within the first 60 months of the date of delivery shall be replaced or
repaired. The manufacturer's written warranty for the LED signal modules shall be dated, signed by an Officer of the company and included in the product submittal to the State. ## (a) Physical and Mechanical Requirements - 1. Modules can be manufactured under this specification for the following faces: - a. 12 inch (300 mm) circular, multi-section - b. 12 inch (300 mm) arrow, multi-section - c. 12 inch (300 mm) pedestrian, 2 sections - The maximum weight of a module shall be 4 lbs. (1.8 kg). - 3. Each module shall be a sealed unit to include all parts necessary for operation (a printed circuit board, power supply, a lens and gasket, etc.), and shall be weather proof after installation and connection. - 4. Material used for the lens and signal module construction shall conform to ASTM specifications for the materials. - 5. The lens of the module shall be tinted with a wavelength-matched color to reduce sun phantom effect and enhance on/off contrast. The tinting shall be uniform across the lens face. Polymeric lens shall provide a surface coating or chemical surface treatment applied to provide abrasion resistance. The lens of the module shall be integral to the unit, convex with a smooth outer surface and made of plastic. The lens shall have a textured surface to reduce glare. - 6. The use of tinting or other materials to enhance ON/OFF contrasts shall not affect chromaticity and shall be uniform across the face of the lens. - 7. Each module shall have a symbol of the type of module (i.e. circle, arrow, etc.) in the color of the module. The symbol shall be 1 inch (25.4 mm) in diameter. Additionally, the color shall be written out in 1/2 inch (12.7mm) letters next to the symbol. ### (b) Photometric Requirements - 1. The minimum initial luminous intensity values for the modules shall conform to the values in Table 1 of the VTCSH (2005) for circular signal indications, and as stated in Table 3 of these specifications for arrow and pedestrian indications at 25 °C. - 2. The modules shall meet or exceed the illumination values stated in Articles 1078.01 and 1078.02 the Standard Specifications for circular signal indications, and Table 3 of these specifications for arrow and pedestrian indications, throughout the useful life based on normal use in a traffic signal operation over the operating temperature range. - The measured chromaticity coordinates of the modules shall conform to the chromaticity requirements of Section 4.2 of the VTCSH (2005) or applicable successor ITE specifications. - 4. The LEDs utilized in the modules shall be AllnGaP technology for red, yellow, Portland orange (pedestrian) and white (pedestrian) indications, and GaN for green indications, and shall be the ultra bright type rated for 100,000 hours of continuous operation from 40 °C to +74 °C. ## (c) Electrical - 1. Maximum power consumption for LED modules is per Table 2. - 2. Operating voltage of the modules shall be 120 VAC. All parameters shall be measured at this voltage. - 3. The modules shall be operationally compatible with currently used controller assemblies (solid state load switches, flashers, and conflict monitors). - 4. When a current of 20 mA AC (or less) is applied to the unit, the voltage read across the two leads shall be 15 VAC or less. - 5. The LED modules shall provide constant light output under power. Modules with dimming capabilities shall have the option disabled or set on a non-dimming operation. - 6. The individual LEDs shall be wired such that a catastrophic loss or the failure of one or more LED will not result in the loss of the entire module. ### (d) Retrofit Traffic Signal Module - 1. The following specification requirements apply to the Retrofit module only. All general specifications apply unless specifically superseded in this section. - 2. Retrofit modules can be manufactured under this specification for the following faces: - a. 12 inch (300 mm) circular, multi-section - b. 12 inch (300 mm) arrow, multi-section - c. 12 inch (300 mm) pedestrian, 2 sections - Each Retrofit module shall be designed to be installed in the doorframe of a standard traffic signal housing. The Retrofit module shall be sealed in the doorframe with a onepiece EPDM (ethylene propylene rubber) gasket. - 4. The maximum weight of a Retrofit module shall be 4 lbs. (1.8 kg). - Each Retrofit module shall be a sealed unit to include all parts necessary for operation (a printed circuit board, power supply, a lens and gasket, etc.), and shall be weather proof after installation and connection. - 6. Electrical conductors for modules, including Retrofit modules, shall be 39.4 inches (1m) in length, with quick disconnect terminals attached. - 7. The lens of the Retrofit module shall be integral to the unit, shall be convex with a smooth outer surface and made of plastic or of glass. - (e) The following specification requirements apply to the 12 inch (300 mm) arrow module only. All general specifications apply unless specifically superseded in this section. - The arrow module shall meet specifications stated in Section 9.01 of the Equipment and Material Standards of the Institute of Transportation Engineers (November 1998) [ITE Standards], Chapter 2 (Vehicle Traffic Control Signal Heads) or applicable successor ITE specifications for arrow indications. - 2. The LEDs arrow indication shall be a solid display with a minimum of three (3) outlining rows of LEDs and at least one (1) fill row of LEDs. - (f) The following specification requirement applies to the 12 inch (300 mm) programmed visibility (PV) module only. All general specifications apply unless specifically superseded in this section. - 11. The LED module shall be a module designed and constructed to be installed in a programmed visibility (PV) signal housing without modification to the housing. - (g) The following specification requirements apply to the 12 inch (300 mm) Pedestrian module only. All general specifications apply unless specifically superseded in this section. - 1. Each pedestrian signal LED module shall provide the ability to actuate the solid upraised hand and the solid walking person on one 12 inch (300mm) section. - 2. Two (2) pedestrian sections shall be installed. The top section shall be wired to illuminate only the upraised hand and the bottom section shall be the walking man. - 3. "Egg Crate" type sun shields are not permitted. All figures must be a minimum of 9 inches (225mm) in height and easily identified from a distance of 120-feet (36.6m). ### <u>LIGHT EMITTING DIODE (LED) PEDESTRIAN COUNTDOWN SIGNAL HEAD.</u> ### Add the following to Article 1078.02 of the Standard Specifications: ### General. 1. The module shall operate in one mode: Clearance Cycle Countdown Mode Only. The countdown module shall display actual controller programmed clearance cycle and shall start counting when the flashing clearance signal turns on and shall countdown to "0" and turn off when the steady Upraised Hand (symbolizing Don't Walk) signal turns on. Module shall not have user accessible switches or controls for modification of cycle. - 2. At power on, the module shall enter a single automatic learning cycle. During the automatic learning cycle, the countdown display shall remain dark. - 3. The module shall re-program itself if it detects any increase or decrease of Pedestrian Timing. The counting unit will go blank once a change is detected and then take one complete pedestrian cycle (with no counter during this cycle) to adjust its buffer timer. - 4. The module shall allow for consecutive cycles without displaying the steady Upraised Hand. - 5. The module shall recognize preemption events and temporarily modify the crossing cycle accordingly. - 6. If the controller preempts during the Walking Person (symbolizing Walk), the countdown will follow the controller's directions and will adjust from Walking Person to flashing Upraised Hand. It will start to count down during the flashing Upraised Hand. - 7. If the controller preempts during the flashing Upraised Hand, the countdown will continue to count down without interruption. - 8. The next cycle, following the preemption event, shall use the correct, initially programmed values. - If the controller output displays Upraised Hand steady condition and the unit has not arrived to zero or if both the Upraised Hand and Walking Person are dark for some reason, the unit suspends any timing and the digits will go dark. - 10. The digits will go dark for one pedestrian cycle after loss of power of more than 1.5 seconds. - 11. The countdown numerals shall be two (2) "7 segment" digits forming the time display utilizing two rows of LEDs. - 12. The LED module shall meet the requirements of the Institute of Transportation Engineers (ITE) LED purchase specification, "Pedestrian Traffic Control Signal Indications Part 2: LED Pedestrian Traffic Signal Modules," or applicable successor ITE specifications, except as modified herein. - 13. The LED modules shall provide constant light output under power. Modules with dimming capabilities shall have the option disabled or set on a non-dimming operation. - 14. In the event of a power outage, light output from the LED modules shall cease instantaneously. - 15. The LEDs utilized in the modules shall be AllnGaP technology for Portland Orange (Countdown Numerals and Upraised Hand) and GaN technology for Lunar White (Walking Person) indications. - 16. The individual LEDs shall be wired such that a catastrophic loss or the failure of one or more LED will not result in the loss of the entire module. - 1. Maximum power consumption for LED modules is 29 watts. - 2. The measured chromaticity shall remain unchanged over the input line voltage range listed of 80 VAC to 135 VAC. ## TRAFFIC SIGNAL BACKPLATE. Delete 1st sentence of Article 1078.03 of the Standard Specifications and add "All backplates shall be aluminum and louvered". Add the following to the third paragraph of Article 1078.03 of the Standard Specifications.
The reflective backplate shall not contain louvers. Delete second sentence of the fourth paragraph of Article 1078.03 f the Standard Specifications. Add the following to the fourth paragraph of Article 1078.03 of the Standard Specifications: When retro reflective sheeting is specified, it shall be Type ZZ sheeting according to Article 1091.03 and applied in preferred orientation for the maximum angularity according to the manufacturer's recommendations. The retro reflective sheeting shall be installed under a controlled environment at the manufacturer/supplier before shipment to the contractor. The aluminum backplate shall be prepared and cleaned, following recommendations of the retro reflective sheeting manufacturer. ### INDUCTIVE LOOP DETECTOR. Add the following to Article 1079.01 of the Standard Specifications: Contracts requiring new cabinets shall provide for rack mounted detector amplifier cards. Detector amplifiers shall provide LCD displays with loop frequency, inductance, and change of inductance readings. ### ILLUMINATED SIGN, LIGHT EMITTING DIODE. Delete last sentence of Article 1084.01(a) and add "Mounting hardwire shall be black polycarbonate or galvanized steel and similar to mounting Signal Head hardware and bracket specified herein and shall provide tool free access to the interior." Revise the second paragraph of Article 1084.01(a) to read: The exterior surface of the housing shall be acid-etched and shop painted with one coat of zinc-chromate primer and two coats of exterior enamel. The housing shall be the same color (yellow or black) to match the existing or proposed signal heads. The painting shall be according to Section 851. Add the following to Article 1084.01 (b) of the Standard Specifications: The message shall be formed by rows of LEDs. The sign face shall be 24 inches (600 mm) by 24 inches (600 mm). Add the following to Article 1084.01 of the Standard Specifications: (e) The light emitting diode (LED) blank out signs shall be manufactured by National Sign & Signal Company, or an approved equal and consist of a weatherproof housing and door, LEDs and transformers. ## **ILLUMINATED STREET NAME SIGN** The illuminate street name sign shall be as follows. (a) Description. The LEDs shall be white in color and utilize InGaN or UV thermally efficient technology. The LED Light Engines shall be designed to fit inside a standard fluorescent illuminated street sign housing in lieu of fluorescent lamps and ballasts or a slim line type housing. The LED internally-illuminated street name sign shall display the designated street name clearly and legibly in the daylight hours without being energized and at night when energized. The sign assembly shall consist of a four-, six-, or eight-foot aluminum housing. White translucent 3M DG³ reflective sheeting sign faces with the street name applied in 3M/Scotchlite Series 1177 or current 3M equivalent transparent green shall be installed in hinged doors on the side of the sign for easy access to perform general cleaning and maintenance operations. Illumination shall occur with LED Light Engine as specified. (b) Environmental Requirements. The LED lamp shall be rated for use in the ambient operating temperature range of -40 to +50°C (-40 to +122°F) for storage in the ambient temperature range of -40 to +75°C (-40 to +167°F). - (c) General Construction. - The LED Light Engine shall be a single, self-contained device, for installation in an existing street sign housing. The power supply must be designed to fit and mounted on the inside wall at one end of the street sign housing. The LED Light Engine shall be mounted within the inner top portion of the housing and no components of the light source shall sit between the sign faces. - 2. The assembly and manufacturing processes of the LED Light Engine shall be designed to ensure that all LED and electronic components are adequately supported to withstand mechanical shocks and vibrations in compliance with the specifications of the ANSI, C136.31-2001 standards. - (d) Mechanical Construction. - 1. The sign shall be constructed using a weatherproof, aluminum housing consisting of an extruded aluminum top with a minimum thickness of .140" x 10 ¾" deep (including the drip edge). The extruded aluminum bottom is .094" thick x 5 7/8" deep. The ends of the housing shall be cast aluminum with a minimum thickness of .250". A six-foot sign shall be 72 5/8" long and 22 5/16" tall and not weigh more than 77 pounds. An eight-foot sign shall be 96 5/8" long and 22 5/16" tall and not weigh more than 92 pounds. All corners are continuous TIG (Tungsten Inert Gas) welded to provide a weatherproof seal around the entire housing. - 2. The door shall be constructed of extruded aluminum. Two corners are continuous TIG welded with the other two screwed together to make one side of the door removable for installation of the sign face. The door is fastened to the housing on the bottom by a full length, .040" x 1 1/8" open stainless steel hinge. The door shall be held secure onto a 1" wide by 5/32" thick neoprene gasket by three (six total for two-way sign) quarter-turn fasteners to form a watertight seal between the door and the housing. - 3. The sign face shall be constructed of .125" white translucent polycarbonate. The letters shall be 8" upper case and 6" lower case. The sign face legend background shall consist of 3M/Scotchlite Series 4090T or current equivalent 3M translucent DG³ white VIP (Visual Impact Performance) diamond grade sheeting (ATSM Type 9) and 3M/Scotchlite Series 1177 or current 3M equivalent transparent green acrylic EC (electronic cut-able) film applied to the front of the sign face. The legend shall be framed by a white polycarbonate border. A logo symbol and/or name of the community may be included with approval of the Engineer. - 4. All surfaces of the sign shall be etched and primed in accordance to industry standards before receiving appropriate color coats of industrial enamel. - 5. All fasteners and hardware shall be corrosion resistant stainless steel. No tools are required for routine maintenance. - 6. All wiring shall be secured by insulated wire compression nuts. - 7. A wire entrance junction box shall be supplied with the sign assembly. The box may be supplied mounted to the exterior or interior of the sign and provide a weather tight seal. - 8. A photoelectric switch shall be mounted in the control cabinet to control lighting functions for day and night display. Each sign shall be individually fused. - 9. Brackets and Mounting: LED internally-illuminated street name signs will be factory drilled to accommodate mast arm two-point support assembly mounting brackets. ## (e) Electrical. - 1. Photocell shall be rated 105-305V, turn on at 1.5 fcs. with a 3-5 second delay. A manufacturer's warranty of six (6) years shall be provided. Power consumption shall be no greater than 1 watt at 120V. - 2. The LED Light Engine shall operate from a 60 +- 3 cycle AC line power over a voltage range of 80 to 135 Vac rms. Fluctuations in line voltage over the range of 80 to 135 Vac shall not affect luminous intensity by more than +- 10%. - 3. Total harmonic distortion induced into the AC power line by the LED Light Engine, operated at a nominal operating voltage, and at a temperature of +25°C (+77°F), shall not exceed 20%. - 4. The LED Light Engine shall cycled ON and OFF with a photocell as shown on the detail sheet and shall not exceed the following maximum power values: | 4-Foot Sign | 60 W | |-------------|-------| | 6-Foot Sign | 90 W | | 8-Foot Sign | 120 W | The signs shall not be energized when traffic signals are powered by an alternate energy source such as a generator or uninterruptable power source (UPS). The signs shall be connected to the generator or UPS bypass circuitry. # (f) Photometric Requirements. - The entire surface of the sign panel shall be evenly illuminated. The average maintained luminous intensity measured across the letters, operating under the conditions defined in Environmental Requirements and Wattage Sections shall be of a minimum value of 100 cd/m². - 2. The manufacturer shall make available independent laboratory test results to verify compliance to Voltage Range and Luminous Intensity Distribution Sections. - Twelve (12) 1.25 watt LED units shall be mounted on 1-inch x 22-inch metal cone printed circuit boards (MCPCB). The viewing angle shall be 120 degrees. LED shall have a color temperature of 5200k nominal, CRI of 80 with a life expectancy of 75,000 hrs. # (g) Quality Assurance. The LED Light Engine shall be manufactured in accordance with a vendor quality assurance (QA) program. The production QA shall include statistically controlled routine tests to ensure minimum performance levels of the LED Light Engine build to meet this specification. QA process and test result documentations shall be kept on file for a minimum period of seven (7) years. The LED Light Engine that does not satisfy the production QA testing performance requirements shall not be labeled, advertised, or sold as conforming to these specifications. Each LED Light Engine shall be identified by a manufacturer's serial number for warranty purposes. LED Light Engines shall be replaced or repaired if they fail to function as intended due to workmanship or material defects within the first sixty (60) months from the date of acceptance. LED Light Engines that exhibit luminous intensities less than the minimum value specified in Photometric Section within the first thirty-six (36) months from the date of acceptance shall be replaced or repaired. ## PAYMENTS TO SUBCONTRACTORS (BDE) Effective: June 1, 2000 Revised: January 1, 2006 Federal regulations found at 49 CFR §26.29 mandate the Department to establish a contract clause to require Contractors to pay subcontractors for satisfactory performance of their subcontracts and to set the time for such payments. State law also addresses the timing of payments to be made to
subcontractors and material suppliers. Section 7 of the Prompt Payment Act, 30 ILCS 540/7, requires that when a Contractor receives any payment from the Department, the Contractor shall make corresponding, proportional payments to each subcontractor and material supplier performing work or supplying material within 15 calendar days after receipt of the Department payment. Section 7 of the Act further provides that interest in the amount of two percent per month, in addition to the payment due, shall be paid to any subcontractor or material supplier by the Contractor if the payment required by the Act is withheld or delayed without reasonable cause. The Act also provides that the time for payment required and the calculation of any interest due applies to transactions between subcontractors and lower-tier subcontractors and material suppliers throughout the contracting chain. This Special Provision establishes the required federal contract clause, and adopts the 15 calendar day requirement of the State Prompt Payment Act for purposes of compliance with the federal regulation regarding payments to subcontractors. This contract is subject to the following payment obligations. When progress payments are made to the Contractor according to Article 109.07 of the Standard Specifications, the Contractor shall make a corresponding payment to each subcontractor and material supplier in proportion to the work satisfactorily completed by each subcontractor and for the material supplied to perform any work of the contract. The proportionate amount of partial payment due to each subcontractor and material supplier throughout the contracting chain shall be determined by the quantities measured or otherwise determined as eligible for payment by the Department and included in the progress payment to the Contractor. Subcontractors and material suppliers shall be paid by the Contractor within 15 calendar days after the receipt of payment from the Department. The Contractor shall not hold retainage from the subcontractors. These obligations shall also apply to any payments made by subcontractors and material suppliers to their subcontractors and material suppliers; and to all payments made to lower tier subcontractors and material suppliers throughout the contracting chain. Any payment or portion of a payment subject to this provision may only be withheld from the subcontractor or material supplier to whom it is due for reasonable cause. This Special Provision does not create any rights in favor of any subcontractor or material supplier against the State or authorize any cause of action against the State on account of any payment, nonpayment, delayed payment, or interest claimed by application of the State Prompt Payment Act. The Department will not approve any delay or postponement of the 15 day requirement except for reasonable cause shown after notice and hearing pursuant to Section 7(b) of the State Prompt Payment Act. State law creates other and additional remedies available to any subcontractor or material supplier, regardless of tier, who has not been paid for work properly performed or material furnished. These remedies are a lien against public funds set forth in Section 23(c) of the Mechanics Lien Act, 770 ILCS 60/23(c), and a recovery on the Contractor's payment bond according to the Public Construction Bond Act, 30 ILCS 550. 80022 ## DISADVANTAGED BUSINESS ENTERPRISE PARTICIPATION (BDE) Effective: September 1, 2000 Revised: August 2, 2011 <u>FEDERAL OBLIGATION</u>. The Department of Transportation, as a recipient of federal financial assistance, is required to take all necessary and reasonable steps to ensure nondiscrimination in the award and administration of contracts. Consequently, the federal regulatory provisions of 49 CFR Part 26 apply to this contract concerning the utilization of disadvantaged business enterprises. For the purposes of this Special Provision, a disadvantaged business enterprise (DBE) means a business certified by the Department in accordance with the requirements of 49 CFR Part 26 and listed in the Illinois Unified Certification Program (IL UCP) DBE Directory. STATE OBLIGATION. This Special Provision will also be used by the Department to satisfy the requirements of the Business Enterprise for Minorities, Females, and Persons with Disabilities Act, 30 ILCS 575. When this Special Provision is used to satisfy state law requirements on 100 percent state-funded contracts, the federal government has no involvement in such contracts (not a federal-aid contract) and no responsibility to oversee the implementation of this Special Provision by the Department on those contracts. DBE participation on 100 percent state-funded contracts will not be credited toward fulfilling the Department's annual overall DBE goal required by the US Department of Transportation to comply with the federal DBE program requirements. <u>CONTRACTOR ASSURANCE</u>. The Contractor makes the following assurance and agrees to include the assurance in each subcontract that the Contractor signs with a subcontractor. The Contractor, subrecipient, or subcontractor shall not discriminate on the basis of race, color, national origin, or sex in the performance of this contract. The Contractor shall carry out applicable requirements of 49 CFR Part 26 in the award and administration of contracts funded in whole or in part with federal or state funds. Failure by the Contractor to carry out these requirements is a material breach of this contract, which may result in the termination of this contract or such other remedy as the recipient deems appropriate. OVERALL GOAL SET FOR THE DEPARTMENT. As a requirement of compliance with 49 CFR Part 26, the Department has set an overall goal for DBE participation in its federally assisted contracts. That goal applies to all federal-aid funds the Department will expend in its federally assisted contracts for the subject reporting fiscal year. The Department is required to make a good faith effort to achieve the overall goal. The dollar amount paid to all approved DBE companies performing work called for in this contract is eligible to be credited toward fulfillment of the Department's overall goal. CONTRACT GOAL TO BE ACHIEVED BY THE CONTRACTOR. This contract includes a specific DBE utilization goal established by the Department. The goal has been included because the Department has determined that the work of this contract has subcontracting opportunities that may be suitable for performance by DBE companies. The determination is based on an assessment of the type of work, the location of the work, and the availability of DBE companies to do a part of the work. The assessment indicates that, in the absence of unlawful discrimination, and in an arena of fair and open competition, DBE companies can be expected to perform 5% of the work. This percentage is set as the DBE participation goal for this contract. Consequently, in addition to the other award criteria established for this contract, the Department will only award this contract to a bidder who makes a good faith effort to meet this goal of DBE participation in the performance of the work. A bidder makes a good faith effort for award consideration if either of the following is done in accordance with the procedures set for in this Special Provision: - (a) The bidder documents that enough DBE participation has been obtained to meet the goal: or - (b) The bidder documents that a good faith effort has been made to meet the goal, even though the effort did not succeed in obtaining enough DBE participation to meet the goal. <u>DBE LOCATOR REFERENCES</u>. Bidders shall consult the IL UCP DBE Directory as a reference source for DBE-certified companies. In addition, the Department maintains a letting and item specific DBE locator information system whereby DBE companies can register their interest in providing quotes on particular bid items advertised for letting. Information concerning DBE companies willing to quote work for particular contracts may be obtained by contacting the Department's Bureau of Small Business Enterprises at telephone number (217)785-4611, or by visiting the Department's website at www.dot.il.gov. <u>BIDDING PROCEDURES</u>. Compliance with this Special Provision is a material bidding requirement. The failure of the bidder to comply will render the bid not responsive. - (a) The bidder shall submit a Disadvantaged Business Utilization Plan on Department forms SBE 2025 and 2026 with the bid. - (b) The Utilization Plan shall indicate that the bidder either has obtained sufficient DBE participation commitments to meet the contract goal or has not obtained enough DBE participation commitments in spite of a good faith effort to meet the goal. The Utilization Plan shall further provide the name, telephone number, and telefax number of a responsible official of the bidder designated for purposes of notification of plan approval or disapproval under the procedures of this Special Provision. - (c) The Utilization Plan shall include a DBE Participation Commitment Statement, Department form SBE 2025, for each DBE proposed for the performance of work to achieve the contract goal. For bidding purposes, submission of the completed SBE 2025 forms, signed by the DBEs and faxed to the bidder will be acceptable as long as the original is available and provided upon request. All elements of information indicated on the said form shall be provided, including but not limited to the following: - (1) The names and addresses of DBE firms that will participate in the contract; - (2) A description, including pay item numbers, of the work each DBE will perform; - (3) The dollar amount of the participation of each DBE firm participating. The dollar amount of participation for identified work shall specifically state the quantity, unit price, and total subcontract price for the work to be completed by the DBE. If partial pay
items are to be performed by the DBE, indicate the portion of each item, a unit price where appropriate and the subcontract price amount; - (4) DBE Participation Commitment Statements, form SBE 2025, signed by the bidder and each participating DBE firm documenting the commitment to use the DBE subcontractors whose participation is submitted to meet the contract goal; - (5) if the bidder is a joint venture comprised of DBE companies and non-DBE companies, the plan must also include a clear identification of the portion of the work to be performed by the DBE partner(s); and, - (6) If the contract goal if not met, evidence of good faith efforts. GOOD FAITH EFFORT PROCEDURES. The contract will not be awarded until the Utilization Plan submitted by the apparent successful bidder is approved. All information submitted by the bidder must be complete, accurate and adequately document that enough DBE participation has been obtained or document that good faith efforts of the bidder, in the event enough DBE participation has not been obtained, before the Department will commit to the performance of the contract by the bidder. The Utilization Plan will be approved by the Department if the Utilization Plan documents sufficient commercially useful DBE work performance to meet the contract goal or the bidder submits sufficient documentation of a good faith effort to meet the contract goal pursuant to 49 CFR Part 26, Appendix A. The Utilization Plan will not be approved by the Department if the Utilization Plan does not document sufficient DBE participation to meet the contract goal unless the apparent successful bidder documented in the Utilization Plan that it made a good faith effort to meet the goal. This means that the bidder must show that all necessary and reasonable steps were taken to achieve the contract goal. Necessary and reasonable steps are those which, by their scope, intensity and appropriateness to the objective, could reasonably be expected to obtain sufficient DBE participation, even if they were not successful. The Department will consider the quality, quantity, and intensity of the kinds of efforts that the bidder has made. Mere *pro forma* efforts, in other words, efforts done as a matter of form, are not good faith efforts; rather, the bidder is expected to have taken genuine efforts that would be reasonably expected of a bidder actively and aggressively trying to obtain DBE participation sufficient to meet the contract goal. - (a) The following is a list of types of action that the Department will consider as part of the evaluation of the bidder's good faith efforts to obtain participation. These listed factors are not intended to be a mandatory checklist and are not intended to be exhaustive. Other factors or efforts brought to the attention of the Department may be relevant in appropriate cases, and will be considered by the Department. - (1) Soliciting through all reasonable and available means (e.g. attendance at pre-bid meetings, advertising and/or written notices) the interest of all certified DBE companies that have the capability to perform the work of the contract. The bidder must solicit this interest within sufficient time to allow the DBE companies to respond to the solicitation. The bidder must determine with certainty if the DBE companies are interested by taking appropriate steps to follow up initial solicitations. - (2) Selecting portions of the work to be performed by DBE companies in order to increase the likelihood that the DBE goals will be achieved. This includes, where appropriate, breaking out contract work items into economically feasible units to facilitate DBE participation, even when the prime Contractor might otherwise prefer to perform these work items with its own forces. - (3) Providing interested DBE companies with adequate information about the plans, specifications, and requirements of the contract in a timely manner to assist them in responding to a solicitation. - (4) a. Negotiating in good faith with interested DBE companies. It is the bidder's responsibility to make a portion of the work available to DBE subcontractors and suppliers and to select those portions of the work or material needs consistent with the available DBE subcontractors and suppliers, so as to facilitate DBE participation. Evidence of such negotiation includes the names, addresses, and telephone numbers of DBE companies that were considered; a description of the information provided regarding the plans and specifications for the work selected for subcontracting; and evidence as to why additional agreements could not be reached for DBE companies to perform the work. - b. A bidder using good business judgment would consider a number of factors in negotiating with subcontractors, including DBE subcontractors, and would take a firm's price and capabilities as well as contract goals into consideration. However, the fact that there may be some additional costs involved in finding and using DBE companies is not in itself sufficient reason for a bidder's failure to meet the contract DBE goal, as long as such costs are reasonable. Also the ability or desire of a bidder to perform the work of a contract with its own organization does not relieve the bidder of the responsibility to make good faith efforts. Bidders are not, however, required to accept higher quotes from DBE companies if the price difference is excessive or unreasonable. - (5) Not rejecting DBE companies as being unqualified without sound reasons based on a thorough investigation of their capabilities. The bidder's standing within its industry, membership in specific groups, organizations, or associations and political or social affiliations (for example union vs. non-union employee status) are not legitimate causes for the rejection or non-solicitation of bids in the bidder's efforts to meet the project goal. - (6) Making efforts to assist interested DBE companies in obtaining bonding, lines of credit, or insurance as required by the recipient or Contractor. - (7) Making efforts to assist interested DBE companies in obtaining necessary equipment, supplies, materials, or related assistance or services. - (8) Effectively using the services of available minority/women community organizations; minority/women contractors' groups; local, state, and federal minority/women business assistance offices; and other organizations as allowed on a case-by-case basis to provide assistance in the recruitment and placement of DBE companies. - (b) If the Department determines that the apparent successful bidder has made a good faith effort to secure the work commitment of DBE companies to meet the contract goal, the Department will award the contract provided that it is otherwise eligible for award. If the Department determines that the bidder has failed to meet the requirements of this Special Provision or that a good faith effort has not been made, the Department will notify the responsible company official designated in the Utilization Plan that the bid is not responsive. The notification shall include a statement of reasons for the determination. - (c) The bidder may request administrative reconsideration of a determination adverse to the bidder within the five working days after the receipt of the notification date of the determination by delivering the request to the Department of Transportation, Bureau of Small Business Enterprises, Contract Compliance Section, 2300 South Dirksen Parkway, Room 319, Springfield, Illinois 62764 (Telefax: (217)785-1524). Deposit of the request in the United States mail on or before the fifth business day shall not be deemed delivery. The determination shall become final if a request is not made and delivered. A request may provide additional written documentation and/or argument concerning the issues raised in the determination statement of reasons, provided the documentation and arguments address efforts made prior to submitting the bid. The request will be forwarded to the Department's Reconsideration Officer. The Reconsideration Officer will extend an opportunity to the bidder to meet in person in order to consider all issues of documentation and whether the bidder made a good faith effort to meet the goal. After the review by the Reconsideration Officer, the bidder will be sent a written decision within ten working days after receipt of the request for consideration, explaining the basis for finding that the bidder did or did not meet the goal or make adequate good faith efforts to do so.. A final decision by the Reconsideration Officer that a good faith effort was made shall approve the Utilization Plan submitted by the bidder and shall clear the contract for award. A final decision that a good faith effort was not made shall render the bid not responsive. <u>CALCULATING DBE PARTICIPATION</u>. The Utilization Plan values represent work anticipated to be performed and paid for upon satisfactory completion. The Department is only able to count toward the achievement of the overall goal and the contract goal the value of payments made for the work actually performed by DBE companies. In addition, a DBE must perform a commercially useful function on the contract to be counted. A commercially useful function is generally performed when the DBE is responsible for the work and is carrying out its responsibilities by actually performing, managing, and supervising the work involved. The Department and Contractor are governed by the provisions of 49 CFR Part 26.55(c) on questions of commercially useful functions as it affects the work. Specific counting guidelines are provided in 49 CFR Part 26.55, the provisions of which govern over the summary contained herein. - (a) DBE as the Contractor: 100 percent goal credit for that portion of the work performed by the DBE's own forces, including the cost of materials and supplies. Work that a DBE subcontracts to a non-DBE does not count toward the DBE goals. - (b) DBE as a joint
venture Contractor: 100 percent goal credit for that portion of the total dollar value of the contract equal to the distinct, clearly defined portion of the work performed by the DBE's own forces. - (c) DBE as a subcontractor: 100 percent goal credit for the work of the subcontract performed by the DBE's own forces, including the cost of materials and supplies, excluding the purchase of materials and supplies or the lease of equipment by the DBE subcontractor from the prime Contractor or its affiliates. Work that a DBE subcontractor in turn subcontracts to a non-DBE does not count toward the DBE goal. - (d) DBE as a trucker: 100 percent goal credit for trucking participation provided the DBE is responsible for the management and supervision of the entire trucking operation for which it is responsible. At least one truck owned, operated, licensed, and insured by the DBE must be used on the contract. Credit will be given for the following: - (1) The DBE may lease trucks from another DBE firm, including an owner-operator who is certified as a DBE. The DBE who leases trucks from another DBE receives credit for the total value of the transportation services the lessee DBE provides on the contract. - (2) The DBE may also lease trucks from a non-DBE firm, including from an owner-operator. The DBE who leases trucks from a non-DBE is entitled to credit only for the fee or commission is receives as a result of the lease arrangement. - (e) DBE as a material supplier: - (1) 60 percent goal credit for the cost of the materials or supplies purchased from a DBE regular dealer. - (2) 100 percent goal credit for the cost of materials of supplies obtained from a DBE manufacturer. - (3) 100 percent credit for the value of reasonable fees and commissions for the procurement of materials and supplies if not a regular dealer or manufacturer. CONTRACT COMPLIANCE. Compliance with this Special Provision is an essential part of the contract. The Department is prohibited by federal regulations from crediting the participation of a DBE included in the Utilization Plan toward either the contract goal or the Department's overall goal until the amount to be applied toward the goals has been paid to the DBE. The following administrative procedures and remedies govern the compliance by the Contractor with the contractual obligations established by the Utilization Plan. After approval of the Utilization Plan and award of the contract, the Utilization Plan and individual DBE Participation Statements become part of the contract. If the Contractor did not succeed in obtaining enough DBE participation to achieve the advertised contract goal, and the Utilization Plan was approved and contract awarded based upon a determination of good faith, the total dollar value of DBE work calculated in the approved Utilization Plan as a percentage of the awarded contract value shall become the amended contract goal. All work indicated for performance by an approved DBE shall be performed, managed, and supervised by the DBE executing the Participation Statement. - (a) <u>NO AMENDMENT</u>. No amendment to the Utilization Plan may be made without prior written approval from the Department's Bureau of Small Business Enterprises. All requests for amendment to the Utilization Plan shall be submitted to the Department of Transportation, Bureau of Small Business Enterprises, Contract Compliance Section, 2300 South Dirksen Parkway, Room 319, Springfield, Illinois 62764. Telephone number (217)785-4611. Telefax number (217)785-1524. - (b) <u>TERMINATION OR REPLACEMENT</u>. The Contractor shall not terminate or replace a DBE listed on the approved Utilization Plan, or perform with other forces work designated for a listed DBE except as provided in the Special Provision. - (c) CHANGES TO WORK. Any deviation from the DBE condition-of-award or contract plans, specifications, or special provisions must be approved, in writing, by the Department as provided elsewhere in the Contract. The Contractor shall notify affected DBEs in writing of any changes in the scope of work which result in a reduction in the dollar amount condition-of-award to the contract. Where the revision includes work committed to a new DBE subcontractor, not previously involved in the project, then a Request for Approval of Subcontractor, Department form BC 260A, must be signed and submitted. If the commitment of work is in the form of additional tasks assigned to an existing subcontract, than a new Request for Approval of Subcontractor shall not be required. However, the Contractor must document efforts to assure that the existing DBE subcontractor is capable of performing the additional work and has agreed in writing to the change. - (d) <u>ALTERNATIVE WORK METHODS</u>. In addition to the above requirements for reductions in the condition of award, additional requirements apply to the two cases of Contractorinitiated work substitution proposals. Where the contract allows alternate work methods which serve to delete or create underruns in condition of award DBE work, and the Contractor selects that alternate method or, where the Contractor proposes a substitute work method or material that serves to diminish or delete work committed to a DBE and replace it with other work, then the Contractor must demonstrate one of the following: - (1) That the replacement work will be performed by the same DBE (as long as the DBE is certified in the respective item of work) in a modification of the condition of award; or - (2) That the DBE is aware that its work will be deleted or will experience underruns and has agreed in writing to the change. If this occurs, the Contractor shall substitute other work of equivalent value to a certified DBE or provide documentation of good faith efforts to do so; or - (3) That the DBE is not capable of performing the replacement work or has declined to perform the work at a reasonable competitive price. If this occurs, the Contractor shall substitute other work of equivalent value to a certified DBE or provide documentation of good faith efforts to do so. The Contractor shall not (e) TERMINATION AND REPLACEMENT PROCEDURES. terminate or replace a DBE subcontractor listed in the approved Utilization Plan without prior written consent. This includes, but is not limited to, instances in which the Contractor seeks to perform work originally designated for a DBE subcontractor with its own forces or those of an affiliate, a non-DBE firm, or with another DBE firm. Written consent will be granted only if the Bureau of Small Business Enterprises agrees, for reasons stated in its concurrence document, that the Contractor has good cause to terminate or replace the DBE firm. Before transmitting to the Bureau of Small Business Enterprises any request to terminate and/or substitute a DBE subcontractor, the Contractor shall give notice in writing to the DBE subcontractor, with a copy to the Bureau, of its intent to request to terminate and/or substitute, and the reason for the request. The Contractor shall give the DBE five days to respond to the Contractor's notice. The DBE so notified shall advise the Bureau and the Contractor of the reasons, if any, why it objects to the proposed termination of its subcontract and why the Bureau should not approve the Contractor's action. If required in a particular case as a matter of public necessity, the Bureau may provide a response period shorter than five days. For purposes of this paragraph, good cause includes the following circumstances: - (1) The listed DBE subcontractor fails or refuses to execute a written contract; - (2) The listed DBE subcontractor fails or refuses to perform the work of its subcontract in a way consistent with normal industry standards. Provided, however, that good cause does not exist if the failure or refusal of the DBE subcontractor to perform its work on the subcontract results from the bad faith or discriminatory action of the prime contractor; - (3) The listed DBE subcontractor fails or refuses to meet the prime Contractor's reasonable, nondiscriminatory bond requirements; - (4) The listed DBE subcontractor becomes bankrupt, insolvent, or exhibits credit unworthiness; - (5) The listed DBE subcontractor is ineligible to work on public works projects because of suspension and debarment proceedings pursuant 2 CFR Parts 180, 215 and 1,200 or applicable state law. - (6) You have determined that the listed DBE subcontractor is not a responsible contractor: - (7) The listed DBE subcontractor voluntarily withdraws from the projects and provides to you written notice of its withdrawal; - (8) The listed DBE is ineligible to receive DBE credit for the type of work required; - (9) A DBE owner dies or becomes disabled with the result that the listed DBE contractor is unable to complete its work on the contract; - (10) Other documented good cause that compels the termination of the DBE subcontractor. Provided, that good cause does not exist if the prime Contractor seeks to terminate a DBE it relied upon to obtain the contract so that the prime Contractor can self-perform the work for which the DBE contractor was engaged or so that the prime Contractor can substitute another DBE or non-DBE contractor after contract award. When a DBE is terminated, or fails to complete its work on the Contract for any reason the Contractor shall make a good faith effort to find another DBE to substitute for the original DBE to perform at least the same amount of work under the contract as the terminated DBE to the extent needed to meet the established Contract goal. - (f) PAYMENT RECORDS. The Contractor shall maintain a record of payments for work performed to the DBE participants. The records shall be made available to the Department for inspection upon request. After the performance of the final item of work or delivery of material by a DBE and final payment therefore to the DBE by the Contractor, but not later than thirty calendar days after payment has
been made by the Department to the Contractor for such work or material, the Contractor shall submit a DBE Payment Agreement on Department form SBE 2115 to the Regional Engineer. If full and final payment has not been made to the DBE, the DBE Payment Agreement shall indicate whether a disagreement as to the payment required exists between the Contractor and the DBE or if the Contractor believes that the work has not been satisfactorily completed. If the Contractor does not have the full amount of work indicated in the Utilization Plan performed by the BDE companies indicated in the Utilization Plan and after good faith efforts are reviewed, the Department may deduct from contract payments to the Contractor the amount of the goal not achieved as liquidated and ascertained damages. The Contractor may request an administrative reconsideration of any amount deducted as damages pursuant to subsection (h) of this part. - (g) <u>ENFORCEMENT</u>. The Department reserves the right to withhold payment to the Contractor to enforce the provisions of this Special Provision. Final payment shall not be made on the contract until such time as the Contractor submits sufficient documentation demonstrating achievement of the goal in accordance with this Special Provision or after liquidated damages have been determined and collected. - (h) <u>RECONSIDERATION</u>. Notwithstanding any other provision of the contract, including but not limited to Article 109.09 of the Standard Specifications, the Contractor my request administrative reconsideration of a decision to deduct the amount of the goal not achieved as liquidated damages. A request to reconsider shall be delivered to the Contract Compliance Section and shall be handled and considered in the same manner as set forth in paragraph (c) of "Good Faith Effort Procedures" of this Special Provision, except a final decision that a good faith effort was not made during contract performance to achieve the goal agreed to in the Utilization Plan shall be the final administrative decision of the Department. 80029 # **WORKING DAYS (BDE)** Effective: January 1, 2002 The Contractor shall complete the work within 50 working days. 80071 # SUBCONTRACTOR MOBILIZATION PAYMENTS (BDE) Effective: April 2, 2005 Revised: April 1, 2011 To account for the preparatory work and operations necessary for the movement of subcontractor personnel, equipment, supplies, and incidentals to the project site and for all other work or operations that must be performed or costs incurred when beginning work approved for subcontracting according to Article 108.01 of the Standard Specifications, the Contractor shall make a mobilization payment to each subcontractor. This mobilization payment shall be made at least 14 days prior to the subcontractor starting work. The amount paid shall be equal to 3 percent of the amount of the subcontract reported on form BC 260A submitted for the approval of the subcontractor's work. The mobilization payment to the subcontractor is an advance payment of the reported amount of the subcontract and is not a payment in addition to the amount of the subcontract; therefore, the amount of the advance payment will be deducted from future progress payments. This provision shall be incorporated directly or by reference into each subcontract approved by the Department. 80143 # DIGITAL TERRAIN MODELING FOR EARTHWORK CALCULATIONS (BDE) Effective: April 1, 2007 Revise the first and second paragraphs of Article 202.07(b) of the Standard Specifications to read: "(b) Measured Quantities. Earth and rock excavation will be measured in cubic yards (cubic meters) in their original positions. The volumes will be computed by the method of average end areas using before and after cross sections; or by the method of digital terrain modeling using before and after total station surveys. The volume of any unstable or unsuitable material removed will be measured for payment in cubic yards (cubic meters). In rock excavation, the Contractor shall strip ledge rock of overburden so that necessary survey shots for measurement may be taken. Vertical measurements shall extend from the surface of the rock to an elevation not more than 6 in. (150 mm) below the subgrade of the proposed pavement structure, as shown on the plans, or to the bottom of the rock where that point is above the subgrade of the proposed pavement structure. Horizontal measurements shall extend not more than 6 in. (150 mm) beyond the slope lines fixed by the Engineer for the work. Boulders and rocks 1/2 cu yd (0.5 cu m) or more in volume will be measured individually and the volume computed from average dimensions taken in three directions." Revise the first paragraph of Article 204.07 of the Standard Specifications to read. "204.07 Method of Measurement. Borrow excavation will be measured in cubic yards (cubic meters) in its original position. The volume will be computed by the method of average end areas using before and after cross sections; or by the method of digital terrain modeling using before and after total station surveys." Revise the embankment definition of Article 204.07(b) of the Standard Specifications to read: "Embankment = the volume of fill in its final position computed by the method of average end areas or digital terrain modeling. Both methods will be based upon the existing ground line as shown on the plans, except as noted in (1) and (2) below;" Revise Article 207.04 of the Standard Specifications to read: "207.04 Method of Measurement. This work will be measured for payment in tons (metric tons) according to Article 311.08(b), or in cubic yards (cubic meters) compacted in place and the volume computed by the method of average end areas or digital terrain modeling by total station measurement." Revise the second sentence of the second paragraph of Article 211.07(b) of the Standard Specifications to read: "The volume will be computed by the method of average end areas or digital terrain modeling by total station measurement." 80177 ## PAVEMENT MARKING REMOVAL (BDE) Effective: April 1, 2009 Add the following to the end of the first paragraph of Article 783.03(a) of the Standard Specifications: "The use of grinders will not be allowed on new surface courses." 80231 ### CONSTRUCTION AIR QUALITY - DIESEL VEHICLE EMISSIONS CONTROL (BDE) Effective: April 1, 2009 Revised: January 2, 2012 <u>Diesel Vehicle Emissions Control</u>. The reduction of construction air emissions shall be accomplished by using cleaner burning diesel fuel. The term "equipment" refers to any and all diesel fuel powered devices rated at 50 hp and above, to be used on the project site in excess of seven calendar days over the course of the construction period on the project site (including any "rental" equipment). All equipment on the jobsite, with engine ratings of 50 hp and above, shall be required to: use Ultra Low Sulfur Diesel fuel (ULSD) exclusively (15 ppm sulfur content or less). Diesel powered equipment in non-compliance will not be allowed to be used on the project site, and is also subject to a notice of non-compliance as outlined below. The Contractor shall certify that only ULSD will be used in all jobsite equipment. The certification shall be presented to the Department prior to the commencement of the work. If any diesel powered equipment is found to be in non-compliance with any portion of this specification, the Engineer will issue the Contractor a notice of non-compliance and identify an appropriate period of time, as outlined below under environmental deficiency deduction, in which to bring the equipment into compliance or remove it from the project site. Any costs associated with bringing any diesel powered equipment into compliance with these diesel vehicle emissions controls shall be considered as included in the contract unit prices bid for the various items of work involved and no additional compensation will be allowed. The Contractor's compliance with this notice and any associated regulations shall also not be grounds for a claim. <u>Environmental Deficiency Deduction</u>. When the Engineer is notified, or determines that an environmental control deficiency exists, he/she will notify the Contractor in writing, and direct the Contractor to correct the deficiency within a specified time period. The specified time-period, which begins upon Contractor notification, will be from 1/2 hour to 24 hours long, based on the urgency of the situation and the nature of the deficiency. The Engineer shall be the sole judge regarding the time period. The deficiency will be based on lack of repair, maintenance and diesel vehicle emissions control. If the Contractor fails to correct the deficiency within the specified time frame, a daily monetary deduction will be imposed for each calendar day or fraction thereof the deficiency continues to exist. The calendar day(s) will begin when the time period for correction is exceeded and end with the Engineer's written acceptance of the correction. The daily monetary deduction will be \$1,000.00 for each deficiency identified. If a Contractor or subcontractor accumulates three environmental deficiency deductions in a contract period, the Contractor will be shutdown until the deficiency is corrected. Such a shutdown will not be grounds for any extension of contract time, waiver of penalties, or be grounds for any claim. 80237 ## CONSTRUCTION AIR QUALITY - IDLING RESTRICTIONS (BDE) Effective: April 1, 2009 Idling Restrictions. The Contractor shall establish truck-staging areas for all diesel powered vehicles that are waiting to load or unload material at the jobsite. Staging areas shall be located where the diesel emissions from the equipment will have a minimum impact on adjacent sensitive receptors. The Department will review the selection of staging areas, whether within or outside the existing highway right-of-way, to avoid locations near sensitive areas or populations to the extent possible. Sensitive
receptors include, but are not limited to, hospitals, schools, residences, motels, hotels, daycare facilities, elderly housing and convalescent facilities. Diesel powered engines shall also be located as far away as possible from fresh air intakes, air conditioners, and windows. The Engineer will approve staging areas before implementation. Diesel powered vehicle operators may not cause or allow the motor vehicle, when it is not in motion, to idle for more than a total of 10 minutes within any 60 minute period, except under any of the following circumstances: - 1) The motor vehicle has a gross vehicle weight rating of less than 8000 lb (3630 kg). - 2) The motor vehicle idles while forced to remain motionless because of on-highway traffic, an official traffic control device or signal, or at the direction of a law enforcement official. - 3) The motor vehicle idles when operating defrosters, heaters, air conditioners, or other equipment solely to prevent a safety or health emergency. - 4) A police, fire, ambulance, public safety, other emergency or law enforcement motor vehicle, or any motor vehicle used in an emergency capacity, idles while in an emergency or training mode and not for the convenience of the vehicle operator. - 5) The primary propulsion engine idles for maintenance, servicing, repairing, or diagnostic purposes if idling is necessary for such activity. - 6) A motor vehicle idles as part of a government inspection to verify that all equipment is in good working order, provided idling is required as part of the inspection. - 7) When idling of the motor vehicle is required to operate auxiliary equipment to accomplish the intended use of the vehicle (such as loading, unloading, mixing, or processing cargo; controlling cargo temperature; construction operations, lumbering operations; oil or gas well servicing; or farming operations), provided that this exemption does not apply when the vehicle is idling solely for cabin comfort or to operate non-essential equipment such as air conditioning, heating, microwave ovens, or televisions. - 8) When the motor vehicle idles due to mechanical difficulties over which the operator has no control. - "9) The outdoor temperature is less than 32 °F (0 °C) or greater than 80 °F (26 °C). When the outdoor temperature is greater than or equal to 32 °F (0 °C) or less than or equal to 80 °F (26 °C), a person who operates a motor vehicle operating on diesel fuel shall not cause or allow the motor vehicle to idle for a period greater than 30 minutes in any 60 minute period while waiting to weigh, load, or unload cargo or freight, unless the vehicle is in a line of vehicles that regularly and periodically moves forward. The above requirements do not prohibit the operation of an auxiliary power unit or generator set as an alternative to idling the main engine of a motor vehicle operating on diesel fuel. <u>Environmental Deficiency Deduction</u>. When the Engineer is notified, or determines that an environmental control deficiency exists based on non-compliance with the idling restrictions, he/she will notify the Contractor, and direct the Contractor to correct the deficiency. If the Contractor fails to correct the deficiency a monetary deduction will be imposed. The monetary deduction will be \$1,000.00 for each deficiency identified. 80239 CONSTRUCTION AIR QUALITY - DIESEL RETROFIT (BDE) Effective: June 1, 2010 The reduction of emissions of particulate matter (PM) for off-road equipment shall be accomplished by installing retrofit emission control devices. The term "equipment" refers to diesel fuel powered devices rated at 50 hp and above, to be used on the jobsite in excess of seven calendar days over the course of the construction period on the jobsite (including rental equipment). Contractor and subcontractor diesel powered off-road equipment assigned to the contract shall be retrofitted using the phased in approach shown below. Equipment that is of a model year older than the year given for that equipment's respective horsepower range shall be retrofitted: | Effective Dates | Horsepower Range | Model Year | |-----------------|------------------|------------| | | | | | June 1, 2010 1/ | 600-749 | 2002 | | | 750 and up | 2006 | | | · | | | June 1, 2011 2/ | 100-299 | 2003 | | | 300-599 | 2001 | | | 600-749 | 2002 | | | 750 and up | 2006 | | June 1, 2012 2/ | 50-99 | 2004 | | | 100-299 | 2003 | | | 300-599 | 2001 | | | 600-749 | 2002 | | | 750 and up | 2006 | - 1/ Effective dates apply to Contractor diesel powered off-road equipment assigned to the contract. - 2/ Effective dates apply to Contractor and subcontractor diesel powered off-road equipment assigned to the contract. The retrofit emission control devices shall achieve a minimum PM emission reduction of 50 percent and shall be: - a) Included on the U.S. Environmental Protection Agency (USEPA) Verified Retrofit Technology List (http://www.epa.gov/otag/retrofit/verif-list.htm), or verified by the California Air Resources Board (CARB) (http://www.arb.ca.gov/diesel/verde/verdev.htm); or - b) Retrofitted with a non-verified diesel retrofit emission control device if verified retrofit emission control devices are not available for equipment proposed to be used on the project, and if the Contractor has obtained a performance certification from the retrofit device manufacturer that the emission control device provides a minimum PM emission reduction of 50 percent. Note: Large cranes (Crawler mounted cranes) which are responsible for critical lift operations are exempt from installing retrofit emission control devices if such devices adversely affect equipment operation. Diesel powered off-road equipment with engine ratings of 50 hp and above, which are unable to be retrofitted with verified emission control devices or if performance certifications are not available which will achieve a minimum 50 percent PM reduction, may be granted a waiver by the Department if documentation is provided showing good faith efforts were made by the Contractor to retrofit the equipment. Construction shall not proceed until the Contractor submits a certified list of the diesel powered off-road equipment that will be used, and as necessary, retrofitted with emission control devices. The list(s) shall include (1) the equipment number, type, make, Contractor/rental company name; and (2) the emission control devices make, model, USEPA or CARB verification number, or performance certification from the retrofit device manufacturer. Equipment reported as fitted with emissions control devices shall be made available to the Engineer for visual inspection of the device installation, prior to being used on the jobsite. The Contractor shall submit an updated list of retrofitted off-road construction equipment as retrofitted equipment changes or comes on to the jobsite. The addition or deletion of any diesel powered equipment shall be included on the updated list. If any diesel powered off-road equipment is found to be in non-compliance with any portion of this special provision, the Engineer will issue the Contractor a diesel retrofit deficiency deduction. Any costs associated with retrofitting any diesel powered off-road equipment with emission control devices shall be considered as included in the contract unit prices bid for the various items of work involved and no additional compensation will be allowed. The Contractor's compliance with this notice and any associated regulations shall not be grounds for a claim. ## **Diesel Retrofit Deficiency Deduction** When the Engineer determines that a diesel retrofit deficiency exists, a daily monetary deduction will be imposed for each calendar day or fraction thereof the deficiency continues to exist. The calendar day(s) will begin when the time period for correction is exceeded and end with the Engineer's written acceptance of the correction. The daily monetary deduction will be \$1,000.00 for each deficiency identified. The deficiency will be based on lack of diesel retrofit emissions control. If a Contractor accumulates three diesel retrofit deficiency deductions for the same piece of equipment in a contract period, the Contractor will be shutdown until the deficiency is corrected. Such a shutdown will not be grounds for any extension of the contract time, waiver of penalties, or be grounds for any claim. 80261 # UTILITY COORDINATION AND CONFLICTS (BDE) Effective: April 1, 2011 Revised: January 1, 2012 Revise Article 105.07 of the Standard Specifications to read: "105.07 Cooperation with Utilities. The Department reserves the right at any time to allow work by utilities on or near the work covered by the contract. The Contractor shall conduct his/her work so as not to interfere with or hinder the progress or completion of the work being performed by utilities. The Contractor shall also arrange the work and shall place and dispose of the materials being used so as not to interfere with the operations of utility work in the area. The Contractor shall cooperate with the owners of utilities in their removal and rearrangement operations so work may progress in a reasonable manner, duplication or rearrangement of work may be reduced to a minimum, and services rendered by those parties will not be unnecessarily interrupted. The Contractor shall coordinate with any planned utility adjustment or new installation and the Contractor shall take all precautions to prevent disturbance or damage to utility facilities. Any failure on the part of the utility owner, or their representative, to proceed with any planned utility adjustment or new installation shall be reported promptly by the Contractor to the Engineer." Revise the first sentence of the last paragraph of Article 107.19 of the Standard Specifications to read: "When the Contractor encounters unexpected regulated substances due to the presence
of utilities in unanticipated locations, the provisions of Article 107.40 shall apply; otherwise, if the Engineer does not direct a resumption of operations, the provisions of Article 108.07 shall apply." Revise Article107.31 of the Standard Specification to read: ### "107.31 Reserved." Add the following four Articles to Section 107 of the Standard Specifications: - "107.37 Locations of Utilities within the Project Limits. All known utilities existing within the limits of construction are either indicated on the plans or visible above ground. For the purpose of this Article, the limits of proposed construction are defined as follows: - (a) Limits of Proposed Construction for Utilities Paralleling the Roadway. - (1) The horizontal limits shall be a vertical plane, outside of, parallel to, and 2 ft (600 mm) distant at right angles from the plan or revised slope limits. - In cases where the limits of excavation for structures are not shown on the plans, the horizontal limits shall be a vertical plane 4 ft (1.2 m) outside the edges of structure footings or the structure where no footings are required. - (2) The upper vertical limits shall be the regulations governing the roadbed clearance for the specific utility involved. - (3) The lower vertical limits shall be either the top of the utility at the depth below the proposed grade as prescribed by the governing agency or the limits of excavation, whichever is less. - (b) Limits of Proposed Construction for Utilities Crossing the Roadway in a Generally Transverse Direction. - (1) Utilities crossing excavations for structures that are normally made by trenching such as sewers, underdrains, etc. and all minor structures such as manholes, inlets, foundations for signs, foundations for traffic signals, etc., the limits shall be the space to be occupied by the proposed permanent construction, unless otherwise required by the regulations governing the specific utility involved. (2) For utilities crossing the proposed site of major structures such as bridges, sign trusses, etc., the limits shall be as defined above for utilities extending in the same general direction as the roadway. It is understood and agreed that the Contractor has considered in the bid all of the permanent and temporary utilities in their present and/or adjusted positions as indicated in the contract. It is further understood the actual location of the utilities may be located anywhere within the tolerances provided in 220 ILCS 50/2.8 or Administrative Code Title 92 Part 530.40(c), and the proximity of some utilities to construction may require extraordinary measures by the Contractor to protect those utilities. No additional compensation will be allowed for any delays, inconveniences, or damages sustained by the Contractor due to the presence of or any claimed interference from known utility facilities or any adjustment of them, except as specifically provided in the contract. 107.38 Adjustments of Utilities within the Project Limits. The adjustment of utilities consists of the relocation, removal, replacement, rearrangements, reconstruction, improvement, disconnection, connection, shifting, new installation, or altering of an existing utility facility in any manner. Utilities which are to be adjusted shall be adjusted by the utility owner or the owner's representative or by the Contractor as a contract item. Generally, arrangements for adjusting known utilities will be made by the Department prior to project construction; however, utilities will not necessarily be adjusted in advance of project construction and, in some cases, utilities will not be removed from the proposed construction limits as described in Article 107.37. When utility adjustments must be performed in conjunction with construction, the utility adjustment work will be indicated in the contract. The Contractor may make arrangements for adjustment of utilities indicated in the contract, but not scheduled by the Department for adjustment, provided the Contractor furnishes the Department with a signed agreement with the utility owner covering the adjustments to be made. The cost of any such adjustments shall be the responsibility of the Contractor. 107.39 Contractor's Responsibility for Locating and Protecting Utility Property and Services. At points where the Contractor's operations are adjacent to properties or facilities of utility companies, or are adjacent to other property, damage to which might result in considerable expense, loss, or inconvenience, work shall not be commenced until all arrangements necessary for the protection thereof have been made. Within the State of Illinois, a State-Wide One Call Notice System has been established for notifying utilities. Outside the city limits of the City of Chicago, the system is known as the Joint Utility Locating Information for Excavators (JULIE) System. Within the city limits of the City of Chicago the system is known as DIGGER. All utility companies and municipalities which have buried utility facilities in the State of Illinois are a part of this system. The Contractor shall call JULIE (800-892-0123) or DIGGER (312-744-7000), a minimum of 48 hours in advance of work being done in the area, and they will notify all member utility companies involved their respective utility should be located. For utilities which are not members of JULIE or DIGGER, the Contractor shall contact the owners directly. The plan general notes will indicate which utilities are not members of JULIE or DIGGER. The following table indicates the color of markings required of the State-Wide One Call Notification System. | Utility Service | Color | | | | |---|---|--|--|--| | Electric Power, Distribution and Transmission | Safety Red | | | | | Municipal Electric Systems | Safety Red | | | | | Gas Distribution and Transmission | High Visibility Safety Yellow | | | | | Oil Distribution and Transmission | High Visibility Safety Yellow | | | | | Telephone and Telegraph System | Safety Alert Orange | | | | | Community Antenna Television Systems | Safety Alert Orange | | | | | Water Systems | Safety Precaution Blue | | | | | Sewer Systems | Safety Green | | | | | Non-Potable Water and Slurry Lines | Safety Purple | | | | | Temporary Survey | Safety Pink | | | | | Proposed Excavation | Safety White (Black when snow is on the ground) | | | | The State-Wide One Call Notification System will provide for horizontal locations of utilities. When it is determined that the vertical location of the utility is necessary to facilitate construction, the Engineer may make the request for location from the utility after receipt of notice from the Contractor. If the utility owner does not field locate their facilities to the satisfaction of the Engineer, the Engineer will authorize the Contractor in writing to proceed to locate the facilities in the most economical and reasonable manner, subject to the approval of the Engineer, and be paid according to Article 109.04. The Contractor shall be responsible for maintaining the excavations or markers provided by the utility owners. The Contractor shall take all necessary precautions for the protection of the utility facilities. The Contractor shall be responsible for any damage or destruction of utility facilities resulting from neglect, misconduct, or omission in the Contractor's manner or method of execution or nonexecution of the work, or caused by defective work or the use of unsatisfactory materials. Whenever any damage or destruction of a utility facility occurs as a result of work performed by the Contractor, the utility company will be immediately notified. The utility company will make arrangements to restore such facility to a condition equal to that existing before any such damage or destruction was done. In the event of interruption of utility services as a result of accidental breakage or as a result of being exposed or unsupported, the Contractor shall promptly notify the proper authority and shall cooperate with the said authority in the restoration of service. If water service is interrupted, repair work shall be continuous until the service is restored. No work shall be undertaken around fire hydrants until provisions for continued service have been approved by the local fire authority. 107.40 Conflicts with Utilities. Except as provided hereinafter, the discovery of a utility in an unanticipated location will be evaluated according to Article 104.03. It is understood and agreed that the Contractor has considered in the bid all facilities not meeting the definition of a utility in an unanticipated location and no additional compensation will be allowed for any delays, inconveniences, or damages sustained by the Contractor due to the presence of or any claimed interference from such facilities. When the Contractor discovers a utility in an unanticipated location, the Contractor shall not interfere with said utility, shall take proper precautions to prevent damage or interruption of the utility, and shall promptly notify the Engineer of the nature and location of said utility. - (a) Definition. A utility in an unanticipated location is defined as an active or inactive utility, which is either: - (1) Located underground and (a) not shown in any way in any location on the contract documents; (b) not identified in writing by the Department to the Contractor prior to the letting; or (c) not located relative to the location shown in the contract within the tolerances provided in 220 ILCS 50/2.8 or Administrative Code Title 92 Part 530.40(c); or - (2) Located above ground or underground and not relocated as provided in the contract. Service connections shall not be considered to be utilities in unanticipated locations. - (b) Compensation. Compensation will not be allowed for delays, inconveniences, or damages sustained by the Contractor from conflicts with facilities not meeting the above
definition; or if a conflict with a utility in an unanticipated location does not cause a shutdown of the work applicable to the utility or a documentable reduction in the rate of progress exceeding the limits set herein. The provisions of Article 104.03 notwithstanding, compensation for delays caused by a utility in an unanticipated location will be paid according to the provisions of this Article governing minor and major delays or reduced rate of production which are defined as follows: - (1) Minor Delay. A minor delay occurs when the Contractor's operation is completely stopped by a utility in an unanticipated location for more than two hours, but not to exceed three weeks. - (2) Major Delay. A major delay occurs when the Contractor's operation is completely stopped by a utility in an unanticipated location for more than three weeks. - (3) Reduced Rate of Production Delay. A reduced rate of production delay occurs when the contractor's rate of production decreases by more than 25 percent and lasts longer than seven days. - (c) Payment. Payment for Minor, Major and Reduced Rate of Production Delays will be made as follows. - (1) Minor Delay. Labor idled which cannot be used on other work will be paid for according to Article 109.04(b)(1) and (2) for the time between start of the delay and the minimum remaining hours in the work shift required by the prevailing practice in the area. Equipment idled which cannot be used on other work, and which is authorized to standby on the project site by the Engineer, will be paid for according to Article 109.04(b)(4). (2) Major Delay. Labor will be the same as for a minor delay. Equipment will be the same as for a minor delay, except Contractor-owned equipment will be limited to three weeks plus the cost of move-out to either the Contractor's yard or another job, whichever is less. Rental equipment may be paid for longer than three weeks provided the Contractor presents adequate support to the Department (including lease agreement) to show retaining equipment on the job is the most economical course to follow and in the public interest. (3) Reduced Rate of Production Delay. The Contractor will be compensated for the reduced productivity for labor and equipment time in excess of the 25 percent threshold for that portion of the delay in excess of seven days. Determination of compensation will be in accordance with Article 104.02, except labor and material additives will not be permitted. Whether covered by (1), (2) or (3) above, additional traffic control required as a result of the operation(s) delayed will be paid for according to Article 109.04 for the total length of the delay. If the delay is clearly shown to have caused work, which would have otherwise been completed, to be done after material or labor costs have increased, such increases may be paid. Payment for materials will be limited to increased cost substantiated by documentation furnished by the Contractor. Payment for increased labor rates will include those items in Article 109.04(b)(1) and (2), except the 35 percent and ten percent additives will not be permitted. On a working day contract, a delay occurring between November 30 and May 1, when work has not started, will not be considered as eligible for payment of measured labor and material costs. Project overhead (not including interest) will be allowed when all progress on the contract has been delayed, and will be calculated as 15 percent of the delay claim. (d) Other Obligations of Contractor. Upon payment of a claim under this provision, the Contractor shall assign subrogation rights to the Department for the Department's efforts of recovery from any other party for monies paid by the Department as a result of any claim under this Provision. The Contractor shall fully cooperate with the Department in its efforts to recover from another party any money paid to the Contractor for delay damages under this Provision." 80270 ### TRAFFIC CONTROL DEFICIENCY DEDUCTION (BDE) Effective: August 1, 2011 Revise the third sentence of the third paragraph of Article 105.03(b) of the Standard Specifications to read: "The daily monetary deduction will be \$2,500." 80273 ## AGREEMENT TO PLAN QUANTITY (BDE) Effective: January 1, 2012 Revise the second paragraph of Article 202.07(a) of the Standard Specifications to read: "When the plans or work have been altered, or when disagreement exists between the Contractor and the Engineer as to the accuracy of the plan quantities, either party shall, before any work is started which would affect the measurement, have the right to request in writing and thereby cause the quantities involved to be measured. When plan quantities are revised by the issuance of revised plan sheets that are made part of the contract, and the Contractor and the Engineer have agreed in writing that the revised quantities are accurate, no further measurement will be required and payment will be made for the revised quantities shown." 80275 ### PORTLAND CEMENT CONCRETE (BDE) Effective: January 1, 2012 Revise Notes 1 and 2 of Article 312.24 of the Standard Specifications to read: - "Note 1. Coarse aggregate shall be gradation CA 6, CA 7, CA 9, CA 10, or CA 11, Class D quality or better. Article 1020.05(d) shall apply. - Note 2. Fine aggregate shall be FA 1 or FA 2. Article 1020.05(d) shall apply." Revise the first paragraph of Article 312.26 of the Standard Specifications to read: "312.26 Proportioning and Mix Design. At least 60 days prior to start of placing CAM II, the Contractor shall submit samples of materials for proportioning and testing. The mixture shall contain a minimum of 200 lb (90 kg) of cement per cubic yard (cubic meter). Portland cement may be replaced with fly ash according to Article 1020.05(c)(1). Blends of coarse and fine aggregates will be permitted, provided the volume of fine aggregate does not exceed the volume of coarse aggregate. The Engineer will determine the proportions of materials for the mixture. However, the Contractor may substitute their own mix design. Article 1020.05(a) shall apply and a Level III PCC Technician shall develop the mix design." Revise the second paragraph of Article 503.22 of the Standard Specifications to read: Other cast-in-place concrete for structures will be paid for at the contract unit price per cubic yard (cubic meter) for CONCRETE HANDRAIL, CONCRETE ENCASEMENT, and SEAL COAT CONCRETE." Add the following to Article 1003.02 of the Standard Specifications: - (e) Alkali Reaction. - (1) ASTM C 1260. Each fine aggregate will be tested by the Department for alkali reaction according to ASTM C 1260. The test will be performed with Type I or II portland cement having a total equivalent alkali content (Na₂O + 0.658K₂O) of 0.90 percent or greater. The Engineer will determine the assigned expansion value for each aggregate, and these values will be made available on the Department's Alkali-Silica Potential Reactivity Rating List. The Engineer may differentiate aggregate based on ledge, production method, gradation number, or other factors. An expansion value of 0.03 percent will be assigned to limestone or dolomite fine aggregates (manufactured stone sand). However, the Department reserves the right to perform the ASTM C 1260 test. - (2) ASTM C 1293 by Department. In some instances, such as chert natural sand or other fine aggregates, testing according to ASTM C 1260 may not provide accurate test results. In this case, the Department may only test according to ASTM C 1293. - (3) ASTM C 1293 by Contractor. If an individual aggregate has an ASTM C 1260 expansion value that is unacceptable to the Contractor, an ASTM C 1293 test may be performed by the Contractor to evaluate the Department's ASTM C 1260 test result. The laboratory performing the ASTM C 1293 test shall be approved by the Department according to the current Bureau of Materials and Physical Research Policy Memorandum "Minimum Laboratory Requirements for Alkali-Silica Reactivity (ASR) Testing". The ASTM C 1293 test shall be performed with Type I or II portland cement having a total equivalent alkali content (Na₂O + 0.658K₂O) of 0.80 percent or greater. The interior vertical wall of the ASTM C 1293 recommended container (pail) shall be half covered with a wick of absorbent material consisting of blotting paper. If the testing laboratory desires to use an alternate container, wick of absorbent material, or amount of coverage inside the container with blotting paper, ASTM C 1293 test results with an alkali-reactive aggregate of known expansion characteristics shall be provided to the Engineer for review and approval. If the expansion is less than 0.040 percent after one year, the aggregate will be assigned an ASTM C 1260 expansion value of 0.08 percent that will be valid for two years, unless the Engineer determines the aggregate has changed significantly. If the aggregate is manufactured into multiple gradation numbers, and the other gradation numbers have the same or lower ASTM C 1260 value, the ASTM C 1293 test result may apply to multiple gradation numbers. The Engineer reserves the right to verify a Contractor's ASTM C 1293 test result. When the Contractor performs the test, a split sample shall be provided to the Engineer. The Engineer may also independently obtain a sample at any time. The aggregate will be considered reactive if the Contractor or Engineer obtains an expansion value of 0.040 percent or greater. Revise Article 1004.02(d) of the Standard Specifications to read: - "(d)Combining Sizes. Each size shall be stored separately and care shall be taken to prevent them from being mixed until they are ready to be proportioned. Separate compartments shall be provided to proportion each size. - (1) When Class BS concrete is to be pumped, the coarse aggregate gradation shall have a minimum of 45 percent passing the 1/2 in. (12.5 mm) sieve. The Contractor may combine two or more coarse aggregate sizes, consisting of CA 7, CA 11, CA 13, CA
14, and CA 16, provided a CA 7 or CA 11 is included in the blend. (2) If the coarse aggregate is furnished in separate sizes, they shall be combined in proportions to provide a uniformly graded coarse aggregate grading within the following limits. | Class | Combined | Sieve Size and Percent Passing | | | | | | | | | | |-------------|--------------|--------------------------------|------|-------|-------|-------|-------|-----|--|--|--| | of | Sizes | 2 1/2 | 2 | 1 3/4 | 1 1/2 | 1 | 1/2 | No. | | | | | Concrete 1/ | Oizes | in. | in. | in. | in. | in. | in. | 4 | | | | | PV 2/ | | | | | · | · | | | | | | | | CA 5 & CA 7 | | | 100 | 98±2 | 72±22 | 22±12 | 3±3 | | | | | | CA 5 & CA 11 | | | 100 | 98±2 | 72±22 | 22±12 | 3±3 | | | | | SI and SC 2 | · · · · · | | | | | | | | | | | | | CA 3 & CA 7 | 100 | 95±5 | _ | _ | 55±25 | 20±10 | 3±3 | | | | | | CA 3 & CA 11 | 100 | 95±5 | | *** | 55±25 | 20±10 | 3±3 | | | | | | CA 5 & CA 7 | | _ | 100 | 98±2 | 72±22 | 22±12 | 3±3 | | | | | | CA 5 & CA 11 | | | 100 | 98±2 | 72±22 | 22±12 | 3±3 | | | | | Class | Combined | Sieve Size (metric) and Percent Passing | | | | | | | | | |--------------|--------------|---|------|-----|------|-------|-------|------|--|--| | of | Sizes | 63 | 50 | 45 | 37.5 | 25 | 12.5 | 4.75 | | | | Concrete 1/ | 0,203 | mm . | mm | mm | шщ | mm | mm | mm | | | | PV 21 | | | | | | | | | | | | | CA 5 & CA 7 | | | 100 | 98±2 | 72±22 | 22±12 | 3±3 | | | | | CA 5 & CA 11 | | | 100 | 98±2 | 72±22 | 22±12 | 3±3 | | | | SI and SC 21 | · | | | | | | | | | | | | CA 3 & CA 7 | 100 | 95±5 | | | 55±25 | 20±10 | 3±3 | | | | | CA 3 & CA 11 | 100 | 95±5 | | | 55±25 | 20±10 | 3±3 | | | | | CA 5 & CA 7 | | | 100 | 98±2 | 72±22 | 22±12 | 3±3 | | | | | CA 5 & CA 11 | | | 100 | 98±2 | 72±22 | 22±12 | 3±3 | | | - 1/ See Table 1 of Article 1020.04. - 2/ Any of the listed combination of sizes may be used." Add the following to Article 1004.02 of the Standard Specifications: - (g) Alkali Reaction. - (1) Each coarse aggregate will be tested by the Department for alkali reaction according to ASTM C 1260. The test will be performed with Type I or II portland cement having a total equivalent alkali content (Na₂O + 0.658K₂O) of 0.90 percent or greater. The Engineer will determine the assigned expansion value for each aggregate, and these values will be made available on the Department's Alkali-Silica Potential Reactivity Rating List. The Engineer may differentiate aggregate based on ledge, production method, gradation number, or other factors. An expansion value of 0.05 percent will be assigned to limestone or dolomite coarse aggregates. However, the Department reserves the right to perform the ASTM C 1260 test. - (2) ASTM C 1293 by Department. In some instances testing a coarse aggregate according to ASTM C 1260 may not provide accurate test results. In this case, the Department may only test according to ASTM C 1293. - (3) ASTM C 1293 by Contractor. If an individual aggregate has an ASTM C 1260 expansion value that is unacceptable to the Contractor, an ASTM C 1293 test may be performed by the Contractor according to Article 1003.02(e)(3). Revise the first paragraph of Article 1019.06 of the Standard Specifications to read: "1019.06 Contractor Mix Design. A Contractor may submit their own mix design and may propose alternate fine aggregate materials, fine aggregate gradations, or material proportions. Article 1020.05(a) shall apply and a Level III PCC Technician shall develop the mix design." Revise Section 1020 of the Standard Specifications to read: #### "SECTION 1020, PORTLAND CEMENT CONCRETE 1020.01 **Description.** This item shall consist of the materials, mix design, production, testing, curing, low air temperature protection, and temperature control of concrete. ## 1020.02 Materials. Materials shall be according to the following. | Item | Article/Section | |-------------------------------|-----------------| | (a) Cement | 1001 | | (b) Water | | | (c) Fine Aggregate | | | (d) Coarse Aggregate | | | (e) Concrete Admixtures | 1021 | | (f) Finely Divided Minerals | 1010 | | (g) Concrete Curing Materials | 1022 | | (h) Straw | | | (i) Calcium Chloride | | # **1020.03** Equipment. Equipment shall be according to the following. | Item | Article/Section | |---|-----------------| | (a) Concrete Mixers and Trucks | 1103.01 | | (b) Batching and Weighing Equipment | 1103.02 | | (c) Automatic and Semi-Automatic Batching Equipment | | | (d) Water Supply Equipment | 1103.11 | | (e) Membrane Curing Equipment | | | (f) Mobile Portland Cement Concrete Plants | | 1020.04 Concrete Classes and General Mix Design Criteria. The classes of concrete shown in Table 1 identify the various mixtures by the general uses and mix design criteria. If the class of concrete for a specific item of construction is not specified, Class SI concrete shall be used. For the minimum cement factor in Table 1, it shall apply to portland cement, portlandpozzolan cement, and portland blast-furnace slag except when a particular cement is specified in the Table. The Contractor shall not assume that the minimum cement factor indicated in Table 1 will produce a mixture that will meet the specified strength. In addition, the Contractor shall not assume that the maximum finely divided mineral allowed in a mix design according to Article 1020.05(c) will produce a mixture that will meet the specified strength. The Contractor shall select a cement factor within the allowable range that will obtain the specified strength. The Contractor shall take into consideration materials selected, seasonal temperatures, and other factors which may require the Contractor to submit multiple mix designs. For a portland-pozzolan cement, portland blast-furnace slag cement, or when replacing portland cement with finely divided minerals per Articles 1020.05(c) and 1020.05(d), the portland cement content in the mixture shall be a minimum of 375 lbs/cu yd (222 kg/cu m). When the total of organic processing additions, inorganic processing additions, and limestone addition exceed 5.0 percent in the cement, the minimum portland cement content in the mixture shall be 400 lbs/cu yd (237 kg/cu m). When calculating the portland cement portion in the portland-pozzolan or portland blast-furnace slag cement, the AASHTO M 240 tolerance may be ignored. Special classifications may be made for the purpose of including the concrete for a particular use or location as a separate pay item in the contract. The concrete used in such cases shall conform to this section. | Class
of
Conc. | Use | | | | | | | | | | | | | | | | |----------------------|---|---|-----------------------|--------------------------------------|----------------------------|---------------------|--|-------------------------------------|-----------------------|-------------------------------|---|---|--|---------------------|---|--| | | | Section Facto Reference | | Cement
Factor
cwt/cu yd
(3) | | Factor
cwt/cu yd | | ction Factor Cement
erence Ratio | | l Co
u m (Flex | | Mix Design Compressive Strength (Flexural Strength) psi, minimum Days | | Air
Content
% | Coarse
Aggregate
Gradations
(14) | | | | | | Min. | Max | | (4) | 3 | 14 | 28 | | • | | | | | | | PV | Pavement Base Course Base Course Widening Driveway Pavement Shoulders Shoulder Curb | 420 or 421
353
354
423
483
662 | 5.65 (1)
6.05 (2) | 7.05 | 0.32 - 0.42 | | Ty III
3500
(650) | 3500
(650) | | 5.0 - 8.0 | CA 5 & CA 7,
CA 5 & CA 11,
CA 7, CA 11,
or CA 14 | | | | | | | | Pavement Patching
Bridge Deck Patching (10) | 442 | | | | | 3200
(600)
Article 701.17(e)(3)b.
at 48 hours | | | | | | | | | | | | PP-1 | | 6.50
6.20 (Ty III) | 7.50
7.20 (Ty III) | 0.32 - 0.44 | 2-4 | | | 4.0 - 7.0 | CA 7, CA 11,
CA 13, CA 14, | | | | | | | | | PP-2 | | 7.35 | 7.35 | 0.32 - 0.38 | | | t 24 houi | | 4.0 - 6.0 | or CA 16 | | | | | | | | PP-3 | | 7.35 (Ty III) (8) | 7.35 (Ty III) (8) | 0.32 - 0.35 | | - | t 16 houi | | 4.0 - 6.0 | 1 | | | | | | | | PP-4 | | 6.00 (9) | 6.25 (9) | 0.32 - 0.50 | | | at 8 hour | | 4.0 - 6.0 | | | | | | | | | PP-5 | | 6.75 (9) | 6.75 (9) | 0.32 - 0.40 | 2-8 | . 8 | at 4 hour | s | 4.0 - 6.0 | CA 16 | | | | | | | RR | Railroad Crossing | 422 | 6.50
6.20 (Ty III) | 7.50
7.20 (Ty III) | 0.32 - 0.44 | 2-4 | | 500 (650
t 48 hou | | 4.0 - 7.0 | CA 7, CA 11,
or CA 14 | | | | | | | BS | Bridge Superstructure
Bridge Approach Slab | 503 | 6.05 | 7.05 | 0.32 - 0.44 | 2 - 4
(5) | | 4000
(675) | | 5.0 - 8.0 | CA 7, CA 11,
or CA 14 (7) | | | | | | | PC | Various Precast Concrete Items
Wet Cast
Dry Cast | 1042 | 5.65
5.65 (TY III) | 7.05
7.05 (TY III) | 0.32 - 0.44
0.25 - 0.40 | 1 - 4
0 - 1 | See | Section | 1042 | 5.0 - 8.0
N/A | CA7, CA11,CA 13
CA 14, CA 16, o
CA 7 & CA 16 | | | | | | | PS | Precast Prestressed Members Precast Prestressed Piles and Extensions Precast Prestressed Sight Screen | 504
512
639 | 5.65
5.65 (TY III) | 7.05
7.05 (TY III) | 0.32 - 0.44 | 1-4 | | | 91ans
5000
3500 | 5.0 - 8.0 | CA 11 (11),
CA 13, CA 14 (11)
or CA 16 | | | | | | | | | TABLE 1. C | LASSES OF | CONCRET | E AND MIX | DESIG | N CRIT | ERIA | | | | |----------------------
--|---|--------------------------------|---------|----------------------------|-----------------|----------------|---|------------------|---------------------|--| | Class
of
Conc. | Use | Specification
Section
Reference | Ceme
Facto
cwt/cu
(3) | or | Water /
Cement
Ratio | တ− ၁၉ p. in.(4) | Compr
(Fiex | flix Designessive Soural Street, minimum. Days 14 | trength
ngth) | Air
Content
% | Coarse
Aggregate
Gradations
(14) | | DS | Drilled Shaft (12) Metal Shell Piles (12) Sign Structures Drilled Shaft (12) Light Tower Foundation (12) | 516
512
734
837 | 6.65 | 7.05 | 0.32 - 0.44 | 6 - 8
(6) | | 4000
(675) | | 5.0 - 8.0 | CA 13, CA 14,
CA 16, or a blend
of these gradations. | | sc | Seal Coat | 503 | 5.65 (1)
6.05 (2) | 7.05 | 0.32 - 0.44 | 3-5 | | 3500
(650) | | 6.0 max. | CA 3 & CA 7,
CA 3 & CA 11,
CA 5 & CA 7,
CA 7 & CA 11,
CA 7, or CA 11 | | SI | Structures (except Superstructure) Sidewalk Slope Wall Encasement Box Culverts End Section and Collar Curb, Gutter, Curb & Gutter, Median, and Paved Ditch Concrete Barrier Sign Structures Spread Footing Concrete Foundation Pole Foundation (12) Traffic Signal Foundation Drilled Shaft (12) Square or Rectangular | 503
424
511
512
540
542
606
637
734
836
878 | 5.65 (1)
6.05 (2) | 7.05 | 0.32 - 0.44 | 2 - 4
(5) | | 3500
(650) | | 5.0 - 8.0 | CA 3 & CA 7,
CA 3 & CA 11,
CA 5 & CA 7,
CA 5 & CA 11,
CA 7, CA 11, CA 13,
CA 14, or CA 16
(13) | Notes: - (1) Central-mixed. - (2) Truck-mixed or shrink-mixed. Shrink-mixed concrete will not be permitted for Class PV concrete. - (3) For Class SC concrete and for any other class of concrete that is to be placed underwater, except Class DS concrete, the cement factor shall be increased by ten percent. - (4) The maximum slump may be increased to 7 in. when a high range water-reducing admixture is used for all classes of concrete, except Class PV, SC, and PP. For Class SC, the maximum slump may be increased to 8 in. For Class PP-1, the maximum slump may be increased to 6 in. For Class PS, the 7 in. maximum slump may be increased to 8 1/2 in. if the high range water-reducing admixture is the polycarboxylate type. - (5) The slump range for slipform construction shall be 1/2 to 1 1/2 in. - (6) If concrete is placed to displace drilling fluid, or against temporary casing, the slump shall be 8 10 in. at the point of placement. If a water-reducing admixture is used in lieu of a high range water-reducing admixture according to Article 1020.05(b)(7), the slump shall be 2 4 in. - (7) For Class BS concrete used in bridge deck patching, the coarse aggregate gradation shall be CA 13, CA 14, or CA 16, except CA 11 may be used for full-depth patching. - (8) In addition to the Type III portland cement, 100 lb/cu yd of ground granulated blast-furnace slag and 50 lb/cu yd of microsilica (silica fume) shall be used. For an air temperature greater than 85 °F, the Type III portland cement may be replaced with Type I or II portland cement. - (9) The cement shall be a rapid hardening cement from the Department's "Approved List of Packaged, Dry, Rapid Hardening Cementitious Materials for Concrete Repairs" for PP-4 and calcium aluminate cement for PP-5. - (10) For Class PP concrete used in bridge deck patching, the aggregate gradation shall be CA 13, CA 14, or CA 16, except CA 11 may be used for full-depth patching. In addition, the mix design shall have 72 hours to obtain a 4,000 psi compressive or 675 psi flexural strength for all PP mix designs. - (11) The nominal maximum size permitted is 3/4 in. Nominal maximum size is defined as the largest sieve which retains any of the aggregate sample particles. - (12) The concrete mix shall be designed to remain fluid throughout the anticipated duration of the pour plus one hour. At the Engineer's discretion, the Contractor may be required to conduct a minimum 2 cu yd trial batch to verify the mix design. - (13) CA 3 or CA 5 may be used when the nominal maximum size does not exceed two-thirds the clear distance between parallel reinforcement bars, or between the reinforcement bar and the form. Nominal maximum size is defined in Note 11. - (14) Alternate combinations of gradations sizes may be used with the approval of the Engineer. Refer also to Article 1004.02(d) for additional information on combining sizes. | | T. | ABLE 1. CLA | ASSES OF CO | NCRETE AN | D MIX DES | IGN CRI | ΓERIA (| metric) | | | | | | |----------------------|---|---|------------------------------------|---------------------|----------------------------|--------------------|--|----------------------|----------------|--|---|---------------------|---| | Class
of
Conc. | Use | Specification
Section
Reference | Cement
Factor
kg/cu m
(3) | | Factor
kg/cu m
(3) | | Water /
Cement
Ratio
kg/kg | S
u
m
p | Compr
(Flex | dix Designessive Stural Street, minim Days | trength
ength) | Air
Content
% | Coarse
Aggregate
Gradations
(14) | | | | | Min. | Max | | mm (4) | 3 | 14 | 28 | | | | | | PV | Pavement Base Course Base Course Widening Driveway Pavement Shoulders Shoulder Curb | 420 or 421
353
354
423
483
662 | 335 (1)
360 (2) | 418 | 0.32 - 0.42 | 50 - 100
(5) | Ty III
24,000
(4500) | 24,000
(4500) | | 5.0 - 8.0 | CA 5 & CA 7,
CA 5 & CA 11,
CA 7, CA 11, or
CA 14 | | | | PP | Pavement Patching
Bridge Deck Patching (10) | 442 | | | | | 22,100
(4150)
Article 701.17(e)(3)b. | | - | | | | | | | PP-1 | | 385
365 (Ty III) | 445
425 (Ty III) | 0.32 - 0.44 | 50 - 100 | at 48 hours | | 4.0 - 7.0 | CA 7, CA 11,
CA 13, CA 14, | | | | | | PP-2 | | 435 | 435 | 0.32 - 0.38 | | | t 24 hou | | | or CA 16 | | | | | PP-3 | | 435 (Ty III) (8) | | 0.32 - 0.35 | | | t 16 hou | | 4.0 - 6.0 | | | | | | PP-4 | | 355 (9) | 370 (9) | 0.32 - 0.50 | | | at 8 hour | | 4.0 - 6.0 | 24 42 24 44 | | | | | PP-5 | | 400 (9) | 400 (9) | 0.32 - 0.40 | 50 - 200 | | at 4 hour | S | 4.0 - 6.0 | CA 13, CA 14, or CA 16 | | | | RR | Railroad Crossing | 422 | 385
365 (Ty III) | 445
425 (Ty III) | 0.32 - 0.44 | 50 - 100 | | .000 (45
t 48 hou | | 4.0 - 7.0 | CA 7, CA 11,
or CA 14 | | | | BS | Bridge Superstructure
Bridge Approach Slab | 503 | 360 | 418 | 0.32 - 0.44 | 50 - 100
(5) | | 27,500
(4650) | | 5.0 - 8.0 | CA 7, CA 11,
or CA 14 (7) | | | | PC | Various Precast Concrete Items
Wet Cast
Dry Cast | 1042 | 335
335 (TY III) | 418
418 (TY III) | 0.32 - 0.44
0.25 - 0.40 | 25 - 100
0 - 25 | See | Section | 1042 | 5.0 - 8.0
N/A | CA7, CA11, CA13,
CA 14, CA 16, or
CA 7 & CA 16 | | | | | Precast Prestressed Members | 504 | 335 | 418 | | | | | Plans | 5.0 - 8.0 | CA 11 (11), | | | | PS | Precast Prestressed Piles and
Extensions | 512 | 335 (TY III) | 418 (TY III) | 0.32 - 0.44 | 25 - 100 | | | 34,500 | | CA 13, CA 14 (11),
or CA 16 | | | | | Precast Prestressed Sight Screen | 639 | | L | l | | L | | 24,000 | <u> </u> | | | | | | | BLE 1. CLAS | | | 1 | S | | | | | | |----------------------|--|---|-------------------------------|-----|-------------------------------------|-------------------|----------------|---|------------------------|--|--| | Class
of
Conc. | :
Use | Specification
Section
Reference | Ceme
Facto
kg/cu
(3) | m | Water /
Cement
Ratio
kg/kg | l
m
p
mm | Compi
(Flex | Aix Designessive Street Air Minimum Days | trength
ngth)
um | Air
Content
% | Coarse
Aggregate
Gradations
(14) | | | | | Min. | Max | | (4) | 3 | 14 | 28 | | <u></u> | | DS | Drilled Shaft (12) Metal Shell Piles (12) Sign Structures Drilled Shaft (12) Light Tower Foundation (12) | 516
512
734
837 | 395 | 418 | 0.32 - 0.44 | 150 -200
(6) | | 27,500
(4650) | | 5.0 - 8.0 | CA 13, CA 14,
CA 16, or a
blend of these
gradations. | | sc | Seal Coat | 503 | 335 (1)
360 (2) | 418 | 0.32 - 0.44 | 75 - 125 | | 24,000
(4500) | | Optional
6.0 max. | CA 3 & CA 7,
CA 3 & CA 11,
CA 5 & CA 7,
CA 7 & CA 11,
CA 7, or CA 11 | | SI | Structures (except Superstructure) Sidewalk Slope Wall Encasement Box Culverts End Section and Collar Curb, Gutter, Curb & Gutter, Median, and Paved Ditch Concrete Barrier Sign Structures Spread Footing Concrete Foundation Pole Foundation (12) Traffic Signal Foundation Drilled Shaft (12) Square or Rectangular | 503
424
511
512
540
542
606
637
734 | 335 (1)
360 (2)
| 418 | 0.32 - 0.44 | 50 - 100
(5) | | 24,000
(4500) | | 5.0 - 8.0 | CA 3 & CA 7,
CA 3 & CA 11,
CA 5 & CA 7,
CA 5 7 CA 11,
CA 7, CA 11,
CA 13, CA 14, o
CA 16
(13) | Notes: - (1) Central-mixed. - (2) Truck-mixed or shrink-mixed. Shrink-mixed concrete will not be permitted for Class PV concrete. - (3) For Class SC concrete and for any other class of concrete that is to be placed underwater, except Class DS concrete, the cement factor shall be increased by ten percent. - (4) The maximum slump may be increased to 175 mm when a high range water-reducing admixture is used for all classes of concrete except Class PV, SC, and PP. For Class SC, the maximum slump may be increased to 200 mm. For Class PP-1, the maximum slump may be increased to 150 mm. For Class PS, the 175 mm maximum slump may be increased to 215 mm if the high range water-reducing admixture is the polycarboxylate type. - (5) The slump range for slipform construction shall be 13 to 40 mm. - (6) If concrete is placed to displace drilling fluid, or against temporary casing, the slump shall be 200 -250 mm at the point of placement. If a water-reducing admixture is used in lieu of a high range waterreducing admixture according to Article 1020.05(b)(7), the slump shall be 50 – 100 mm. - (7) For Class BS concrete used in bridge deck patching, the coarse aggregate gradation shall be CA 13, CA 14, or CA 16, except CA 11 may be used for full-depth patching. - (8) In addition to the Type III portland cement, 60 kg/cu m of ground granulated blast-furnace slag and 30 kg/cu m of microsilica (silica fume) shall be used. For an air temperature greater than 30 °C, the Type III portland cement may be replaced with Type I or II portland cement. - (9) The cement shall be a rapid hardening cement from the Department's "Approved List of Packaged, Dry, Rapid Hardening Cementitious Materials for Concrete Repairs" for PP-4 and calcium aluminate cement for PP-5. - (10) For Class PP concrete used in bridge deck patching, the aggregate gradation shall be CA 13, CA 14, or CA 16, except CA 11 may be used for full-depth patching. In addition, the mix design shall have 72 hours to obtain a 27,500 kPa compressive or 4,650 kPa flexural. - (11) The nominal maximum size permitted is 19 mm. Nominal maximum size is defined as the largest sieve which retains any of the aggregate sample particles. - (12) The concrete mix shall be designed to remain fluid throughout the anticipated duration of the pour plus one hour. At the Engineer's discretion, the Contractor may be required to conduct a minimum 1.5 cu m trial batch to verify the mix design. - (13) CA 3 or CA 5 may be used when the nominal maximum size does not exceed two-thirds the clear distance between parallel reinforcement bars, or between the reinforcement bar and the form. Nominal maximum size is defined in Note 11. - (14) Alternate combinations of gradation sizes may be used with the approval of the Engineer. Refer also to Article 1004.02(d) for additional information on combining sizes. ## 1020.05 Other Concrete Criteria. The concrete shall be according to the following. (a) Proportioning and Mix Design. For all Classes of concrete, it shall be the Contractors responsibility to determine mix design material proportions and to proportion each batch of concrete. A Level III PCC Technician shall develop the mix design for all Classes of concrete, except Classes PC and PS. The mix design, submittal information, trial batch, and Engineer verification shall be according to the "Portland Cement Concrete Level III Technician" course material. The Contractor shall provide the mix designs a minimum of 45 calendar days prior to production. More than one mix design may be submitted for each class of concrete. The Engineer will verify the mix design submitted by the Contractor. Verification of a mix design shall in no manner be construed as acceptance of any mixture produced. Once a mix design has been verified, the Engineer shall be notified of any proposed changes. Tests performed at the jobsite will determine if a mix design can meet specifications. If the tests indicate it cannot, the Contractor shall make adjustments to a mix design, or submit a new mix design if necessary, to comply with the specifications. (b) Admixtures. The Contractor shall be responsible for using admixtures and determining dosages for all Classes of concrete, cement aggregate mixture II, and controlled low-strength material that will produce a mixture with suitable workability, consistency, and plasticity. In addition, admixture dosages shall result in the mixture meeting the specified plastic and hardened properties. The Contractor shall obtain approval from the Engineer to use an accelerator when the concrete temperature is greater than 60 °F (16 °C). However, this accelerator approval will not be required for Class PP, RR, PC, and PS concrete. The accelerator shall be the non-chloride type unless otherwise specified in the contract plans. The Department will maintain an Approved List of Corrosion Inhibitors. Corrosion inhibitor dosage rates shall be according to Article 1020.05(b)(10). For information on approved controlled low-strength material air-entraining admixtures, Article 1019.02. The Department will also maintain an Approved List of Concrete Admixtures, and an admixture technical representative shall be consulted by the Contractor prior to the pour when determining an admixture dosage from this list or when making minor admixture dosage adjustments at the jobsite. The dosage shall be within the range indicated on the approved list unless the influence by other admixtures, jobsite conditions (such as a very short haul time), or other circumstances warrant a dosage outside the range. The Engineer shall be notified when a dosage is proposed outside the range. To determine an admixture dosage, air temperature, concrete temperature, cement source and quantity, finely divided mineral sources and quantity, influence of other admixtures, haul time, placement conditions, and other factors as appropriate shall be considered. The Engineer may request the Contractor to have a batch of concrete mixed in the lab or field to verify the admixture dosage is correct. An admixture dosage or combination of admixture dosages shall not delay the initial set of concrete by more than one hour. When-a-retarding admixture is required or appropriate for a bridge deck or bridge deck overlay pour, the initial set time shall be delayed until the deflections due to the concrete dead load are no longer a concern for inducing cracks in the completed work. However, a retarding admixture shall not be used to further extend the pour time and justify the alteration of a bridge deck pour sequence. When determining water in admixtures for water/cement ratio, the Contractor shall calculate 70 percent of the admixture dosage as water, except a value of 50 percent shall be used for a latex admixture used in bridge deck latex concrete overlays. The sequence, method, and equipment for adding the admixtures shall be approved by the Engineer. Admixtures shall be added to the concrete separately. An accelerator shall always be added prior to a high range water-reducing admixture, if both are used. Admixture use shall be according to the following. - (1) When the atmosphere or concrete temperature is 65 °F (18 °C) or higher, a retarding admixture shall be used in the Class BS concrete and concrete bridge deck overlays. The proportions of the ingredients of the concrete shall be the same as without the retarding admixture, except that the amount of mixing water shall be reduced, as may be necessary, in order to maintain the consistency of the concrete as required. In addition, a high range water-reducing admixture shall be used in bridge deck concrete. At the option of the Contractor, a water-reducing admixture may be used with the high range water-reducing admixture in Class BS concrete. - (2) At the Contractor's option, admixtures in addition to an air-entraining admixture may be used for Class PP-1 or RR concrete. When the air temperature is less than 55 °F (13 °C) and an accelerator is used, the non-chloride accelerator shall be calcium nitrite. - (3) When Class C fly ash or ground granulated blast-furnace slag is used in Class PP-1 or RR concrete, a water-reducing or high range water-reducing admixture shall be used. - (4) For Class PP-2 or PP-3 concrete, a non-chloride accelerator followed by a high range water-reducing admixture shall be used, in addition to the air-entraining admixture. The Contractor has the option to use a water-reducing admixture with the high range water-reducing admixture. For Class PP-3 concrete, the non-chloride accelerator shall be calcium nitrite. For Class PP-2 concrete, the non-chloride accelerator shall be calcium nitrite when the air temperature is less than 55 °F (13 °C). - (5) For Class PP-4 concrete, a high range water-reducing admixture shall be used in addition to the air-entraining admixture. The Contractor has the option to use a water-reducing admixture with the high range water-reducing admixture. An accelerator shall not be used. For stationary or truck-mixed concrete, a retarding admixture shall be used to allow for haul time. The Contractor has the option to use a mobile portland cement concrete plant, but a retarding admixture shall not be used unless approved by the Engineer. - For PP-5 concrete, a non-chloride accelerator, high range water-reducing admixture, and air-entraining admixture shall be used. The accelerator, high range water-reducing admixture, and air-entraining admixture shall be per the Contractor's recommendation and dosage. The approved list of concrete admixtures shall not apply. A mobile portland cement concrete plant shall be used to produce the patching mixture. - (6) When a calcium chloride accelerator is specified in the contract, the maximum chloride dosage shall be 1.0 quart (1.0 L) of solution per
100 lb (45 kg) of cement. The dosage may be increased to a maximum 2.0 quarts (2.0 L) per 100 lb (45 kg) of cement if approved by the Engineer. When a calcium chloride accelerator for Class PP-2 concrete is specified in the contract, the maximum chloride dosage shall be 1.3 quarts (1.3 L) of solution per 100 lb (45 kg) of cement. The dosage may be increased to a maximum 2.6 quarts (2.6 L) per 100 lb (45 kg) of cement if approved by the Engineer. - (7) For Class DS concrete a retarding admixture and a high range water-reducing admixture shall be used. For dry excavations that are 10 ft (3 m) or less, the high range water-reducing admixture may be replaced with a water-reducing admixture if the concrete is vibrated. The use of admixtures shall take into consideration the slump loss limits specified in Article 516.12 and the fluidity requirement in Article 1020.04 (Note 12). - (8) At the Contractor's option, when a water-reducing admixture or a high range water-reducing admixture is used for Class PV, PP-1, RR, SC, and SI concrete, the cement factor may be reduced a maximum 0.30 hundredweight/cu yd (18 kg/cu m). However, a cement factor reduction will not be allowed for concrete placed underwater. - (9) When Type F or Type G high range water-reducing admixtures are used, the initial slump shall be a minimum of 1 1/2 in. (40 mm) prior to addition of the Type F or Type G admixture, except as approved by the Engineer. - (10) When specified, a corrosion inhibitor shall be added to the concrete mixture utilized in the manufacture of precast, prestressed concrete members and/or other applications. It shall be added, at the same rate, to all grout around post-tensioning steel when specified. When calcium nitrite is used, it shall be added at the rate of 4 gal/cu yd (20 L/cu m), and shall be added to the mix immediately after all compatible admixtures have been introduced to the batch. When Rheocrete 222+ is used, it shall be added at the rate of 1.0 gal/cu yd (5.0 L/cu m), and the batching sequence shall be according to the manufacturer's instructions. - (c) Finely Divided Minerals. Use of finely divided minerals shall be according to the following. - (1) Fly Ash. At the Contractor's option, fly ash from approved sources may partially replace portland cement in cement aggregate mixture II, Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete. The use of fly ash shall be according to the following. - a. Measurements of fly ash and portland cement shall be rounded up to the nearest 5 lb (2.5 kg). - b. When Class F fly ash is used in cement aggregate mixture II, Class PV, BS, PC, PS, DS, SC, and SI concrete, the amount of portland cement replaced shall not exceed 25 percent by weight (mass). - c. When Class C fly ash is used in cement aggregate mixture II, Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete, the amount of portland cement replaced shall not exceed 30 percent by weight (mass). - d. Fly ash may be used in concrete mixtures when the air temperature is below 40 °F (4 °C), but the Engineer may request a trial batch of the concrete mixture to show the mix design strength requirement will be met. - (2) Ground Granulated Blast-Furnace (GGBF) Slag. At the Contractor's option, GGBF slag may partially replace portland cement in concrete mixtures, for Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete. For Class PP-3 concrete, GGBF slag shall be used according to Article 1020.04. The use of GGBF slag shall be according to the following. - a. Measurements of GGBF slag and portland cement shall be rounded up to the nearest 5 lb (2.5 kg). - b. When GGBF slag is used in Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC and SI concrete, the amount of portland cement replaced shall not exceed 35 percent by weight (mass). - c. GGBF slag may be used in concrete mixtures when the air temperature is below 40 °F (4 °C), but the Engineer may request a trial batch of the concrete mixture to show the mix design strength requirement will be met. - (3) Microsilica. At the Contractor's option, microsilica may be added at a maximum of 5.0 percent by weight (mass) of the cement and finely divided minerals summed together. - Microsilica shall be used in Class PP-3 concrete according to Article 1020.04. - (4) High Reactivity Metakaolin (HRM). At the Contractor's option, HRM may be added at a maximum of 5.0 percent by weight (mass) of the cement and finely divided minerals summed together. - (5) Mixtures with Multiple Finely Divided Minerals. Except as specified for Class PP-3 concrete, the Contractor has the option to use more than one finely divided mineral in Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete as follows. - a. The mixture shall contain a maximum of two finely divided minerals. The finely divided mineral in portland-pozzolan cement or portland blast-furnace slag cement shall count toward the total number of finely divided minerals allowed. The finely divided minerals shall constitute a maximum of 35.0 percent of the total cement plus finely divided minerals. The fly ash portion shall not exceed 30.0 percent for Class C fly ash or 25.0 percent for Class F fly ash. The Class C and F fly ash combination shall not exceed 30.0 percent. The ground granulated blast-furnace slag portion shall not exceed 35.0 percent. The microsilica or high-reactivity metakaolin portion used together or separately shall not exceed ten percent. The finely divided mineral in the portland-pozzolan cement or portland blast-furnace slag blended cement shall apply to the maximum 35.0 percent. - b. Central Mixed. For Class PV, SC, and SI concrete, the mixture shall contain a minimum of 565 lbs/cu yd (335 kg/cu m) of cement and finely divided minerals summed together. If a water-reducing or high-range water-reducing admixture is used, the Contractor has the option to use a minimum of 535 lbs/cu yd (320 kg/cu m). - c. Truck-Mixed or Shrink-Mixed. For Class PV (only truck-mixed permitted), SC, and SI concrete, the mixture shall contain a minimum of 605 lbs/cu yd (360 kg/cu m) of cement and finely divided minerals summed together. If a water-reducing or high-range water-reducing admixture is used, the Contractor has the option to use a minimum of 575 lbs/cu yd (345 kg/cu m). - d. Central-Mixed, Truck-Mixed or Shrink-Mixed. For Class PP-1 and RR concrete, the mixture shall contain a minimum of 650 lbs/cu yd (385 kg/cu m) of cement and finely divided minerals summed together. For Class PP-1 and RR concrete using Type III portland cement, the mixture shall contain a minimum of 620 lbs/cu yd (365 kg/cu m). For Class PP-2 concrete, the mixture shall contain a minimum of 735 lbs/cu yd (435 kg/cu m) of cement and finely divided minerals summed together. For Class BS concrete, the mixture shall contain a minimum of 605 lbs/cu yd (360 kg/cu m). For Class DS concrete, the mixture shall contain a minimum of 665 lbs/cu yd (395 kg/cu m). If a water-reducing or high range water-reducing admixture is used in Class PP-1 and RR concrete, the Contractor has the option to use a minimum of 620 lbs/cu yd (365 kg/cu m) of cement and finely divided minerals summed together. If a water-reducing or high-range water-reducing admixture is used with Type III portland cement in Class PP-1 and RR concrete, the Contractor has the option to use a minimum of 590 lbs/cu yd (350 kg/cu m). - e. Central-Mixed or Truck-Mixed. For Class PC and PS concrete, the mixture shall contain a minimum of 565 lbs/cu yd (335 kg/cu m) of cement and finely divided minerals summed together. - f. The mixture shall contain a maximum of 705 lbs/cu yd (418 kg/cu m) of cement and finely divided mineral(s) summed together for Class PV, BS, PC, PS, DS, SC, and SI concrete. For Class PP-1 and RR concrete, the mixture shall contain a maximum of 750 lbs/cu yd (445 kg/cu m). For Class PP-1 and RR concrete using Type III portland cement, the mixture shall contain a maximum of 720 lbs/cu yd (425 kg/cu m). For Class PP-2 concrete, the mixture shall contain a maximum of 735 lbs/cu yd (435 kg/cu m). - g. For Class SC concrete and for any other class of concrete that is to be placed underwater, except Class DS concrete, the allowable cement and finely divided minerals summed together shall be increased by ten percent. - h. The combination of cement and finely divided minerals shall comply with Article 1020.05(d). - (d) Alkali-Silica Reaction. For cast-in-place (includes cement aggregate mixture II), precast, and precast prestressed concrete, one of the mixture options provided in Article 1020.05(d)(2) shall be used to reduce the risk of a deleterious alkali-silica reaction in concrete exposed to humid or wet conditions. The mixture options are not intended or adequate for concrete exposed to potassium acetate, potassium formate, sodium acetate, or sodium formate. The mixture options will not be required for the dry environment (humidity less than 60 percent) found inside buildings for residential or commercial occupancy. The mixture options shall not apply to concrete revetment mats, insertion lining of pipe culverts, portland cement mortar fairing course, controlled low-strength material, miscellaneous grouts that are not prepackaged, Class PP-3 concrete, Class PP-4 concrete, and Class PP-5 concrete. (1) Aggregate Groups. Each combination of aggregates used in a mixture will be assigned to an aggregate group. The point at which the coarse aggregate and fine aggregate expansion values intersect in the following table will determine the group. | | Aggreg | ate Groups | | | | | | | |---------------------------|-----------------------|----------------|-----------|--|--|--|--|--| | Coarse Aggregate or | Fine Aggregate
Or | | | | | | | | | Coarse Aggregate
Blend | Fine Aggregate Blend | | | | | | | | | · | ASTM C 1260 Expansion | | | | | | | | | ASTM C 1260
Expansion | ≤0.16% | >0.16% - 0.27% | >0.27% | | | | | | | ≤0.16% | Group I | Group II | Group III | | | | | | | >0.16% - 0.27% |
Group II | Group II | Group III | | | | | | | >0.27% | Group III | Group III | Group IV | | | | | | (2) Mixture Options. Based upon the aggregate group, the following mixture options shall be used. However, the Department may prohibit a mixture option if field performance shows a deleterious alkali-silika reaction or Department testing indicates the mixture may experience a deleterious alkali-silica reaction. Group I – Mixture options are not applicable. Use any cement or finely divided mineral. Group II – Mixture options 1, 2, 3, 4, or 5 shall be used. Group III – Mixture options 1, combine 2 with 3, 4 or 5 shall be used. Group IV – Mixture options 1, combine 2 with 4, or 5 shall be used. a. Mixture Option 1. The coarse or fine aggregates shall be blended to place the material in a group that will allow the selected cement or finely divided mineral to be used. Coarse aggregate may only be blended with another coarse aggregate. Fine aggregate may only be blended with another fine aggregate. Blending of coarse with fine aggregate to place the material in another group will not be permitted. When a coarse for fine aggregate is blended, the weighted expansion value shall be calculated separately for the coarse and fine aggregate as follows: Weighted Expansion Value = $(a/100 \times A) + (b/100 \times B) + (c/100 \times C) + ...$ Where: a, b, c... = percentage of aggregate in the blend; A, B, C... = expansion value for that aggregate. - b. Mixture Option 2. A finely divided mineral shall be used as described in 1), 2), 3), or 4) that follow. - Class F Fly Ash. For cement aggregate mixture II, Class PV, BS, PC, PS, MS, DS, SC and SI concrete, the Class F fly ash shall be a minimum 25.0 percent by weight (mass) of the cement and finely divided minerals summed together. - If the maximum total equivalent available alkali content ($Na_2O + 0.658K_2O$) exceeds 4.50 percent for the Class F fly ash, it may be used only if it complies with Mixture Option 5. - Class C Fly Ash. For cement aggregate mixture II, Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete, Class C fly ash shall be a minimum of 25.0 percent by weight (mass) of the cement and finely divided minerals summed together. - If the maximum total equivalent available alkali content ($Na_2O + 0.658K_2O$) exceeds 4.50 percent or the calcium oxide exceeds 26.50 percent for the Class C fly ash, it may be used only per Mixture Option 5. - 3. Ground Granulated Blast-Furnace Slag. For Class PV, PP-1, PP-2, RR, BS, PC, PS, DS, SC, and SI concrete, ground granulated blast-furnace slag shall be a minimum of 25.0 percent by weight (mass) of the cement and finely divided minerals summed together. - If the maximum total equivalent available alkali content ($Na_2O + 0.658K_2O$) exceeds 1.00 percent for the ground granulated blast-furnace slag, it may be used only per Mixture Option 5. - 4. Microsilica or High Reactivity Metakaolin, Microsilica solids or high reactivity metakaolin shall be a minimum 5.0 percent by weight (mass) of the cement and finely divided minerals summed together. - If the maximum total equivalent available alkali content ($Na_2O + 0.658K_2O$) exceeds 1.00 percent for the Microsilica or High Reactivity Metakaolin, it may be used only if it complies with Mixture Option 5. - c. Mixture Option 3. The cement used shall have a maximum total equivalent alkali content (Na₂O + 0.658K₂O) of 0.60 percent. When aggregate in Group II is involved and the Contractor desires to use a finely divided mineral, any finely divided mineral may be used with the cement unless the maximum total equivalent available alkali content (Na₂O + 0.658K₂O) exceeds 4.50 percent for the fly ash; or 1.00 percent for the ground granulated blast-furnace slag, microsilica or high reactivity metakaolin. If the alkali content is exceeded, the finely divided mineral may be used only per Mixture Option 5. - d. Mixture option 4. The cement used shall have a maximum total equivalent alkali content (Na₂O + 0.658K₂O) of 0.45 percent. When aggregate in Group II or III is involved and the Contractor desires to use a finely divided mineral, any finely divided mineral may be used with the cement unless the maximum total equivalent available alkali content ($Na_2O + 0.658K_2O$) exceeds 4.50 percent for the fly ash; or 1.00 percent for the ground granulated blast-furnace slag, microsilica, or high reactivity metakaolin. If the alkali content is exceeded, the finely divided mineral may be used only per Mixture Option 5. e. Mixture Option 5. The proposed cement or finely divided mineral may be used if the ASTM C 1567 expansion value is ≤ 0.16 percent when performed on the aggregate in the concrete mixture with the highest ASTM C 1260 test result. The laboratory performing the ASTM C 1567 test shall be approved by the Department according to the current Bureau of Materials and Physical Research Policy Memorandum "Minimum Laboratory Requirements for Alkali-Silica Reactivity (ASR) Testing". The ASTM C 1567 test will be valid for two years, unless the Engineer determines the materials have changed significantly. For latex concrete, the ASTM C 1567 test shall be performed without the latex. The 0.20 percent autoclave expansion limit in ASTM C 1567 shall not apply. If during the two year time period the Contractor needs to replace the cement, and the replacement cement has an equal or lower total equivalent alkali content (Na₂O + 0.658K₂O), a new ASTM C 1567 test will not be required. The Engineer reserved the right to verify a Contractor's ASTM C 1567 test result. When the Contractor performs the test, a split sample may be requested by the Engineer. The Engineer may also independently obtain a sample at any time. The proposed cement or finely divided mineral will not be allowed for use if the Contractor or Engineer obtains an expansion value greater than 0.16 percent. 1020:06 Water/Cement Ratio. The water/cement ratio shall be determined on a weight (mass) basis. When a maximum water/cement ratio is specified, the water shall include mixing water, water in admixtures, free moisture on the aggregates, and water added at the jobsite. The quantity of water may be adjusted within the limit specified to meet slump requirements. When fly ash, ground granulated blast-furnace slag, high-reactivity metakaolin, or microsilica (silica fume) are used in a concrete mix, the water/cement ratio will be based on the total cement and finely divided minerals contained in the mixture. **1020.07 Slump.** The slump shall be determined according to Illinois Modified AASHTO T 119. If the measured slump falls outside the limits specified, a check test will be made. In the event of a second failure, the Engineer may refuse to permit the use of the batch of concrete represented. If the Contractor is unable to add water to prepare concrete of the specified slump without exceeding the maximum design water/cement ratio, additional cement or water-reducing admixture shall be added. 1020.08 Air Content. The air content shall be determined according to Illinois Modified AASHTO T 152 or Illinois Modified AASHTO T 196. The air-entrainment shall be obtained by the use of cement with an approved air-entraining admixture added during the mixing of the concrete or the use of air-entraining cement. If the air-entraining cement furnished is found to produce concrete having an air content outside the limits specified, its use shall be discontinued immediately and the Contractor shall provide other air-entraining cement which will produce air contents within the specified limits. If the air content obtained is above the specified maximum limit at the jobsite, the Contractor, with the Engineer's approval, may add to the truck mixer non air-entraining cement in the proportion necessary to bring the air content within the specified limits, or the concrete may be further mixed, within the limits of time and revolutions specified, to reduce the air content. If the air content obtained is below the specified minimum limit, the Contractor may add to the concrete a sufficient quantity of an approved air-entraining admixture at the jobsite to bring the air content within the specified limits. 1020.09 Strength Tests. The specimens shall be molded and cured according to Illinois Modified AASHTO T 23. Specimens shall be field cured with the construction item as specified in Illinois Modified AASHTO T 23. The compressive strength shall be determined according to Illinois Modified AASHTO T 22. The flexural strength shall be determined according to Illinois Modified AASHTO T 177. Except for Class PC and PS concrete, the Contractor shall transport the strength specimens from the site of the work to the field laboratory or other location as instructed by the Engineer. During transportation in a suitable light truck, the specimens shall be embedded in straw, burlap, or other acceptable material in a manner meeting with the approval of the Engineer to protect them from damage; care shall be taken to avoid impacts during hauling and handling. For strength specimens, the Contractor shall provide a water storage tank for curing. 1020.10 Handling, Measuring, and Batching Materials. Aggregates shall be handled in a manner to prevent mixing with soil and other foreign material. Aggregates shall be handled in a manner which produces a uniform gradation, before placement in the plant bins. Aggregates delivered to the plant in a nonuniform gradation condition shall be stockpiled. The stockpiled aggregate shall be mixed uniformly before placement in the plant bins. Aggregates shall have a uniform moisture content before placement in the plant bins. This may require aggregates to be stockpiled for 12 hours or more to allow drainage, or water added to the stockpile, or other methods approved by the Engineer. Moisture content requirements for crushed slag or lightweight aggregate shall be according to Article 1004.01(e). Aggregates, cement, and finely divided
minerals shall be measured by weight (mass). Water and admixtures shall be measured by volume or weight (mass). The Engineer may permit aggregates, cement, and finely divided minerals to be measured by volume for small isolated structures and for miscellaneous items. Aggregates, cement, and finely divided minerals shall be measured individually. The volume shall be based upon dry, loose materials. - 1020.11 Mixing Portland Cement Concrete. The mixing of concrete shall be according to the following. - (a) Ready-Mixed Concrete. Ready-mixed concrete is central-mixed, truck-mixed, or shrink-mixed concrete transported and delivered in a plastic state ready for placement in the work and shall be according to the following. (1) Central-Mixed Concrete. Central-mixed concrete is concrete which has been completely mixed in a stationary mixer and delivered in a truck agitator, a truck mixer operating at agitating speed, or a nonagitator truck. The stationary mixer shall operate at the drum speed for which it was designed. The batch shall be charged into the drum so that some of the water shall enter in advance of the cement, finely divided minerals, and aggregates. The flow of the water shall be uniform and all water shall be in the drum by the end of the first 15 seconds of the mixing period. Water shall begin to enter the drum from zero to two seconds in advance of solid material and shall stop flowing within two seconds of the beginning of mixing time. Some coarse aggregate shall enter in advance of other solid materials. For the balance of the charging time for solid materials, the aggregates, finely divided minerals, and cement (to assure thorough blending) shall each flow at acceptably uniform rates, as determined by visual observation. Coarse aggregate shall enter two seconds in advance of other solid materials and a uniform rate of flow shall continue to within two seconds of the completion of charging time. The entire contents of the drum, or of each single compartment of a multiple-drum mixer, shall be discharged before the succeeding batch is introduced. The volume of concrete mixed per batch shall not exceed the mixer's rated capacity as shown on the standard rating plate on the mixer by more than ten percent. The minimum mixing time shall be 75 seconds for a stationary mixer having a capacity greater than 2 cu yd (1.5 cu m). For a mixer with a capacity equal to or less than 2 cu yd (1.5 cu m) the mixing time shall be 60 seconds. Transfer time in multiple drum mixers is included in the mixing time. Mixing time shall begin when all materials are in the mixing compartment and shall end when the discharge of any part of the batch is started. The required mixing times will be established by the Engineer for all types of stationary mixers. When central-mixed concrete is to be transported in a truck agitator or a truck mixer, the stationary-mixed batch shall be transferred to the agitating unit without delay and without loss of any portion of the batch. Agitating shall start immediately thereafter and shall continue without interruption until the batch is discharged from the agitator. The ingredients of the batch shall be completely discharged from the agitator before the succeeding batch is introduced. Drums and auxiliary parts of the equipment shall be kept free from accumulations of materials. The vehicles used for transporting the mixed concrete shall be of such capacity, or the batches shall be so proportioned, that the entire contents of the mixer drum can be discharged into each vehicle load. (2) Truck-Mixed Concrete. Truck-mixed concrete is completely mixed and delivered in a truck mixer. When the mixer is charged with fine and coarse aggregates simultaneously, not less than 60 nor more than 100 revolutions of the drum or blades at mixing speed shall be required, after all of the ingredients including water are in the drum. When fine and coarse aggregates are charged separately, not less than 70 revolutions will be required. Additional mixing beyond 100 revolutions shall be at agitating speed unless additions of water, admixtures, cement, or other materials are made at the jobsite. The mixing operation shall begin immediately after the cement and water, or the cement and wet aggregates, come in contact. The ingredients of the batch shall be completely discharged from the drum before the succeeding batch is introduced. The drum and auxiliary parts of the equipment shall be kept free from accumulations of materials. If additional water or an admixture is added at the jobsite, the concrete batch shall be mixed a minimum of 40 additional revolutions after each addition. - (3) Shrink-Mixed Concrete. Shrink-mixed concrete is mixed partially in a stationary mixer and completed in a truck mixer for delivery. The mixing time of the stationary mixer may be reduced to a minimum of 30 seconds to interminale the ingredients. before transferring to the truck mixer. All ingredients for the batch shall be in the stationary mixer and partially mixed before any of the mixture is discharged into the truck mixer. The partially mixed batch shall be transferred to the truck mixer without delay and without loss of any portion of the batch, and mixing in the truck mixer shall start immediately. The mixing time in the truck mixer shall be not less than 50 nor more than 100 revolutions of the drum or blades at mixing speed. Additional mixing beyond 100 revolutions shall be at agitating speed, unless additions of water, admixtures, cement, or other materials are made at the jobsite. Units designed as agitators shall not be used for shrink mixing. The ingredients of the batch shall be completely discharged from the drum before the succeeding batch is introduced. The drum and auxiliary parts of the equipment shall be kept free from accumulations of materials. If additional water or an admixture is added at the jobsite, the concrete batch shall be mixed a minimum of 40 additional revolutions after each addition. - (4) Mixing Water. Wash water shall be completely discharged from the drum or container before a batch is introduced. All mixing water shall be added at the plant and any adjustment of water at the jobsite by the Contractor shall not exceed the specified maximum water/cement ratio or slump. If strength specimens have been made for a batch of concrete, and subsequently during discharge there is more water added, additional strength specimens shall be made for the batch of concrete. No additional water may be added at the jobsite to central-mixed concrete if the mix design has less than 565 lbs/cu yd (335 kg/cu m) of cement and finely divided minerals summed together. - (5) Mixing and Agitating Speeds. The mixing or agitating speeds used for truck mixers or truck agitators shall be per the manufacturer's rating plate. - (6) Capacities. The volume of plastic concrete in a given batch will be determined according to AASHTO T 121, based on the total weight (mass) of the batch, determined either from the weight (masses) of all materials, including water, entering the batch or directly from the net weight (mass) of the concrete in the batch as delivered. The volume of mixed concrete in truck mixers or truck agitators shall in no case be greater than the rated capacity determined according to the Truck Mixer, Agitator, and Front Discharge Concrete Carrier Standards of the Truck Mixer Manufacturer's Bureau, as shown by the rating plate attached to the truck. If the truck mixer does not have a rating plate, the volume of mixed concrete shall not exceed 63 percent of the gross volume of the drum or container, disregarding the blades. For truck agitators, the value is 80 percent. (7) Time of Haul. Haul time shall begin when the delivery ticket is stamped. The delivery ticket shall be stamped no later than five minutes after the addition of the mixing water to the cement, or after the addition of the cement to the aggregate when the combined aggregates contain free moisture in excess of two percent by weight (mass). If more than one batch is required for charging a truck using a stationary mixer, the time of haul shall start with mixing of the first batch. Haul time shall end when the truck is emptied for incorporation of the concrete into the work. The time elapsing from when water is added to the mix until it is deposited in place at the site of the work shall not exceed 30 minutes when the concrete is transported in nonagitating trucks. The maximum haul time for concrete transported in truck mixers or truck agitators shall be according to the following. | Concrete Temperature at Point | Haul Time | | | | | |--------------------------------|-----------|---------|--|--|--| | of Discharge °F (°C) | Hours | Minutes | | | | | 50-64 (10-17.5) | 1 | 30 | | | | | >64 (>17.5) - without retarder | 1 | 0 | | | | | >64 (>17.5) - with retarder | 1 | 30 | | | | To encourage start-up testing for mix adjustments at the plant, the first two trucks will be allowed an additional 15 minutes haul time whenever such testing is performed. For a mixture which is not mixed on the jobsite, a delivery ticket shall be required for each load. The following information shall be recorded on each delivery ticket: (1) ticket number; (2) name of producer and plant location; (3) contract number; (4) name of Contractor; (5) stamped date and time batched; (6) truck number; (7) quantity batched; (8) amount of admixture(s) in the batch; (9) amount of water in the batch; and (10) Department mix design number. For concrete mixed in jobsite stationary mixers, the above delivery ticket may be waived, but a method of verifying the haul time shall be established to the satisfaction of the Engineer. - (8) Production and Delivery. The production of ready-mixed concrete shall be such that the operations of placing and finishing will be continuous insofar as the job operations require. The Contractor shall be responsible for producing concrete that will have the required workability,
consistency, and plasticity when delivered to the work. Concrete which is unsuitable for placement as delivered will be rejected. The Contractor shall minimize the need to adjust the mixture at the jobsite, such as adding water, admixtures, and cement prior to discharging. - (9) Use of Multiple Plants in the Same Construction Item. The Contractor may simultaneously use central-mixed, truck-mixed, and shrink-mixed concrete from more than one plant, for the same construction item, on the same day, and in the same pour. However, the following criteria shall be met. - a. Each plant shall use the same cement, finely divided minerals, aggregates, admixtures, and fibers. - b. Each plant shall use the same mix design. However, material proportions may be altered slightly in the field to meet slump and air content criteria. Field water adjustments shall not result in a difference that exceeds 0.02 between plants for water/cement ratio. The required cement factor for central-mixed concrete shall be increased to match truck-mixed or shrink-mixed concrete, if the latter two types of mixed concrete are used in the same pour. - c. The maximum slump difference between deliveries of concrete shall be 3/4 in. (19 mm) when tested at the jobsite. If the difference is exceeded, but test results are within specification limits, the concrete may be used. The Contractor shall take immediate corrective action and shall test subsequent deliveries of concrete until the slump difference is corrected. For each day, the first three truck loads of delivered concrete from each plant shall be tested for slump by the Contractor. Thereafter, when a specified test frequency for slump is to be performed, it shall be conducted for each plant at the same time. - d. The maximum air content difference between deliveries of concrete shall be 1.5 percent when tested at the jobsite. If the difference is exceeded, but test results are within specification limits, the concrete may be used. The Contractor shall take immediate corrective action and shall test subsequent deliveries of concrete until the air content difference is corrected. For each day, the first three truck loads of delivered concrete from each plant shall be tested for air content by the Contractor. Thereafter, when a specified test frequency for air content is to be performed, it shall be conducted for each plant at the same time. - e. Strength tests shall be performed and taken at the jobsite for each plant. When a specified strength test is to be performed, it shall be conducted for each plant at the same time. The difference between plants for strength shall not exceed 900 psi (6200 kPa) compressive and 90 psi (620 kPa) flexural. If the strength difference requirements are exceeded, the Contractor shall take corrective action. - f. The maximum haul time difference between deliveries of concrete shall be 15 minutes. If the difference is exceeded, but haul time is within specification limits, the concrete may be used. The Contractor shall take immediate corrective action and check subsequent deliveries of concrete. - (b) Class PC Concrete. The concrete shall be central-mixed or truck-mixed. Variations in plastic concrete properties shall be minimized between batches. - (c) Class PV Concrete. The concrete shall be central-mixed or truck-mixed. The required mixing time for stationary mixers with a capacity greater than 2 cu yd (1.5 cu m) may be less than 75 seconds upon satisfactory completion of a mixer performance test. Mixer performance tests may be requested by the Contractor when the quantity of concrete to be placed exceeds 50,000 sq yd (42,000 sq m). The testing shall be conducted according to the current Bureau of Materials and Physical Research's Policy Memorandum, "Field Test Procedures for Mixer Performance and Concrete Uniformity Tests". The Contractor will be allowed to test two mixing times within a range of 50 to 75 seconds. If satisfactory results are not obtained from the required tests, the mixing time shall continue to be 75 seconds for the remainder of the contract. If satisfactory results are obtained, the mixing time may be reduced. In no event will mixing time be less than 50 seconds. The Contractor shall furnish the labor, equipment, and material required to perform the testing according to the current Bureau of Materials and Physical Research's Policy Memorandum, "Field Test Procedures for Mixer Performance and Concrete Uniformity Tests". A contract which has 12 ft (3.6 m) wide pavement or base course, and a continuous length of 1/2 mile (0.8 km) or more, shall have the following additional requirements. - (1) The plant and truck delivery operation shall be able to provide a minimum of 50 cu yd (38 cu m) of concrete per hour. - (2) The plant shall have automatic or semi-automatic batching equipment. - (d) All Other Classes of Concrete. The concrete shall be central-mixed, truck-mixed, or shrink-mixed concrete. - 1020.12 Mobile Portland Cement Concrete Plants. The use of a mobile portland cement concrete plant may be approved under the provisions of Article 1020.10 for volumetric proportioning in small isolated structures, thin overlays, and for miscellaneous and incidental concrete items. The first 1 cu ft (0.03 cu m) of concrete produced may not contain sufficient mortar and shall not be incorporated in the work. The side plate on the cement feeder shall be removed periodically (normally the first time the mixer is used each day) to see if cement is building up on the feed drum. Sufficient mixing capacity of mixers shall be provided to enable continuous placing and finishing insofar as the job operations and the specifications require. Slump and air tests made immediately after discharge of the mix may be misleading, since the aggregates may absorb a significant amount of water for four or five minutes after mixing. 1020.13 Curing and Protection. The method of curing, curing period, and method of protection for each type of concrete construction is included in the following Index Table. | INDEX TABLE OF CURING AND PROTECTION OF CONCRETE CONSTRUCTION | | | | |---|---|--|--| | TYPE OF CONSTRUCTION | CURING
METHODS | CURING
PERIOD
DAYS | LOW AIR
TEMPERATURE
PROTECTION METHODS | | Cast-in-Place Concrete 11/ | | | | | Pavement
Shoulder | 1020.13(a)(1)(2)(3)(4)(5) ^{3/5/} | 3 | 1020.13(c) | | Base Course Base Course Widening | 1020.13(a)(1)(2)(3)(4)(5) ^{2/} | 3 | 1020.13(c) | | Driveway Median Barrier Curb Gutter Curb & Gutter Sidewalk Slope Wall Paved Ditch | 1020.13(a)(1)(2)(3)(4)(5) ^{4/5/} | 3 | 1020.13(c) ^{16/} | | Catch Basin
Manhole
Inlet
Valve Vault | 1020.13(a)(1)(2)(3)(4)(5) 4 | 3 | 1020.13(c) | | Pavement Patching | 1020.13(a)(1)(2)(3)(4)(5) 21 | 3 12/ | 1020.13(c) | | Bridge Deck Patching | 1020.13(a)(3)(5) | 3 or 7 ^{12/} | 1020.13(c) | | Railroad Crossing | 1020.13(a)(3)(5) | 1 | 1020.13(c) | | Piles and Drilled Shafts | 1020.13(a)(3)(5) | . 7 | 1020.13(d)(1)(2)(3) | | Foundations & Footings
Seal Coat | 1020.13(a)(1)(2)(3)(4)(5) 41 64 | 7 · | 1020.13(d)(1)(2)(3) | | Substructure | 1020.13(a)(1)(2)(3)(4)(5) 1/7/ | 7 | 1020.13(d)(1)(2)(3) | | Superstructure (except deck) | 1020.13(a)(1)(2)(3)(5) ^{8/} | 7 | 1020.13(d)(1)(2) | | Deck | • | | | | Bridge Approach Slab | 1020.13(a)(5) | · 7 | 1020.13(d)(1)(2) 17/ | | Retaining Walls | 1020.13(a)(1)(2)(3)(4)(5) 1/7/ | 7 | 1020.13(d)(1)(2) | | Pump Houses | 1020.13(a)(1)(2)(3)(4)(5) 1(| 7 | 1020.13(d)(1)(2) | | Culverts | 1020.13(a)(1)(2)(3)(4)(5) 4/6/ | . 7 | 1020.13(d)(1)(2) 18/ | | Other Incidental Concrete | 1020.13(a)(1)(2)(3)(5) | 3 | 1020.13(c) | | Precast Concrete 11/ | | | | | Bridge Slabs Piles and Pile Caps Other Structural Members | 1020.13(a)(3)(5) ^{sv 10v} | As ^{13/}
Required | 9/ | | All Other Precast Items | 1020.13(a)(3)(4)(5) 21 91 101 | As ^{14/}
Required | 9/ | | Precast, Prestressed Concrete 11 | | | | | All (tems | 1020(a)(3)(5) ^{6/ 10/} | Until Strand
Tensioning is
Released ^{15/} | 9/ | ### Notes-General: - 1/ Type I, membrane curing only - 2/ Type II, membrane curing only - 3/ Type III, membrane curing only - 4/ Type I, II and III membrane curing - 5/ Membrane Curing will not be permitted between November 1 and April 15. - 6/ The use of water to inundate foundations and footings, seal coats or the bottom slab of culverts is permissible when approved by the Engineer, provided the water temperature can be maintained at 45 °F (7 °C) or higher. - 7/ Asphalt emulsion for waterproofing may be used in lieu of other curing methods when specified and permitted according to Article 503.18. - 8/ On non-traffic surfaces which receive protective coat according to Article 503.19, a linseed oil emulsion curing compound may be used as a substitute for protective coat and other curing methods. The linseed oil emulsion curing compound will be permitted between April 16 and October 31 of the same year, provided it is applied with a mechanical sprayer according to Article 1101.09(b). - 9/ Steam, supplemental heat, or insulated blankets (with or without steam/supplemental heat) are acceptable and shall be according to the Bureau of Materials and Physical Research's Policy Memorandum "Quality Control/Quality Assurance Program for Precast Concrete Products" and the "Manual for Fabrication of Precast, Prestressed Concrete Products". - 10/ A moist room according to AASHTO M 201 is acceptable for curing. - 11/ If curing is required and interrupted because of form removal for cast-in-place concrete items, precast concrete products, or precast prestressed concrete products, the curing shall be resumed within two hours from the start of the form removal. - 12/ Curing maintained only until opening strength is attained for pavement patching, with a
maximum curing period of three days. For bridge deck patching the curing period shall be three days if Class PP concrete is used and 7 days if Class BS concrete is used. - 13/ The curing period shall end when the concrete has attained the mix design strength. The producer has the option to discontinue curing when the concrete has attained 80 percent of the mix design strength or after seven days. All strength test specimens shall remain with the units and shall be subjected to the same curing method and environmental condition as the units, until the time of testing. - 14/ The producer shall determine the curing period or may elect to not cure the product. All strength test specimens shall remain with the units and shall be subjected to the same curing method and environmental condition as the units, until the time of testing. - 15/ The producer has the option to continue curing after strand release. - 16/ When structural steel or structural concrete is in place above slope wall, Article 1020.13(c) shall not apply. The protection method shall be according to Article 1020.13(d)(1). - 17/ When Article 1020.13(d)(2) is used to protect the deck, the housing may enclose only the bottom and sides. The top surface shall be protected according to Article 1020.13(d)(1). - 18/ For culverts having a waterway opening of 10 sq ft (1 sq m) or less, the culverts may be protected according to Article 1020.13(d)(3). - (a) Methods of Curing. Except as provided for in the Index Table of Curing and Protection of Concrete Construction, curing shall be accomplished by one of the following described methods. When water is required to wet the surface, it shall be applied as a fine spray so that it will not mar or pond on the surface. Except where otherwise specified, the curing period shall be at least 72 hours. (1) Waterproof Paper Method. The surface of the concrete shall be covered with waterproof paper as soon as the concrete has hardened sufficiently to prevent marring the surface. The surface of the concrete shall be wetted immediately before the paper is placed. The blankets shall be lapped at least 12 in. (300 mm) end to end, and these laps shall be securely weighted with a windrow of earth, or other approved method, to form a closed joint. The same requirements shall apply to the longitudinal laps where separate strips are used for curing edges, except the lap shall be at least 9 in. (225 mm). The edges of the blanket shall be weighted securely with a continuous windrow of earth or any other means satisfactory to the Engineer to provide an air-tight cover. Any torn places or holes in the paper shall be repaired immediately by patches cemented over the openings, using a bituminous cement having a melting point of not less than 180 °F (82 °C). The blankets may be reused, provided they are air-tight and kept serviceable by proper repairs. A longitudinal pleat shall be provided in the blanket to permit shrinkage where the width of the blanket is sufficient to cover the entire surface. The pleat will not be required where separate strips are used for the edges. Joints in the blanket shall be sewn or cemented together in such a manner that they will not separate during use. - (2) Polyethylene Sheeting Method. The surface of the concrete shall be covered with white polyethylene sheeting as soon as the concrete has hardened sufficiently to The surface of the concrete shall be wetted prevent marring the surface. immediately before the sheeting is placed. The edges of the sheeting shall be weighted securely with a continuous windrow of earth or any other means satisfactory to the Engineer to provide an air-tight cover. Adjoining sheets shall overlap not less than 12 in. (300 mm) and the laps shall be securely weighted with earth, or any other means satisfactory to the Engineer, to provide an air tight cover. For surface and base course concrete, the polyethylene sheets shall be not less than 100 ft (30 m) in length nor longer than can be conveniently handled, and shall be of such width that, when in place, they will cover the full width of the surface, including the edges, except that separate strips may be used to cover the edges. Any tears or holes in the sheeting shall be repaired. When sheets are no longer serviceable as a single unit, the Contractor may select from such sheets and reuse those which will serve for further applications, provided two sheets are used as a single unit; however, the double sheet units will be rejected when the Engineer deems that they no longer provide an air tight cover. - (3) Wetted Burlap Method. The surface of the concrete shall be covered with wetted burlap blankets as soon as the concrete has hardened sufficiently to prevent marring the surface. The blankets shall overlap 6 in. (150 mm). At least two layers of wetted burlap shall be placed on the finished surface. The burlap shall be kept saturated by means of a mechanically operated sprinkling system. In place of the sprinkling system, at the Contractor's option, two layers of burlap covered with impermeable covering shall be used. The burlap shall be kept saturated with water. Plastic coated burlap may be substituted for one layer of burlap and impermeable covering. The blankets shall be placed so that they are in contact with the edges of the concrete, and that portion of the material in contact with the edges shall be kept saturated with water. (4) Membrane Curing Method. Membrane curing will not be permitted where a protective coat, concrete sealer, or waterproofing is to be applied, or at areas where rubbing or a normal finish is required, or at construction joints other than those necessary in pavement or base course. Concrete at these locations shall be cured by another method specified in Article 1020.13(a). After the concrete has been finished and the water sheen has disappeared from the surface, the concrete shall be immediately sealed with membrane curing compound of the type specified. The seal shall be maintained for the specified curing period. The edges of the concrete shall, likewise, be sealed immediately after the forms are removed. Two separate applications, applied at least one minute apart, each at the rate of not less than 1 gal/250 sq ft (0.16 L/sq m) will be required upon the surfaces and edges of the concrete. These applications shall be made with the mechanical equipment specified. Type III compound shall be agitated immediately before and during the application. At locations where the coating is discontinuous or where pin holes show or where the coating is damaged due to any cause and on areas adjacent to sawed joints, immediately after sawing is completed, an additional coating of membrane curing compound shall be applied at the above specified rate. The equipment used may be of the same type as that used for coating variable widths of pavement. Before the additional coating is applied adjacent to sawed joints, the cut faces of the joint shall be protected by inserting a suitable flexible material in the joint, or placing an adhesive width of impermeable material over the joint, or by placing the permanent sealing compound in the joint. Material, other than the permanent sealing compound, used to protect cut faces of the joint, shall remain in place for the duration of the curing period. In lieu of applying the additional coating, the area of the sawed joint may be cured according to any other method permitted. When rain occurs before an application of membrane curing compound has dried, and the coating is damaged, the Engineer may require another application be made in the same manner and at the same rate as the original coat. The Engineer may order curing by another method specified, if unsatisfactory results are obtained with membrane curing compound. (5) Wetted Cotton Mat Method. After the surface of concrete has been textured or finished, it shall be covered immediately with dry or damp cotton mats. The cotton mats shall be placed in a manner which will not mar the concrete surface. A texture resulting from the cotton mat material is acceptable. The cotton mats shall then be wetted immediately and thoroughly soaked with a gentle spray of water. For bridge decks, a foot bridge shall be used to place and wet the cotton mats. The cotton mats shall be maintained in a wetted condition until the concrete has hardened sufficiently to place soaker hoses without marring the concrete surface. The soaker hoses shall be placed on top of the cotton mats at a maximum 4 ft (1.2 m) spacing. The cotton mats shall be kept wet with a continuous supply of water for the remainder of the curing period. Other continuous wetting systems may be used if approved by the Engineer. After placement of the soaker hoses, the cotton mats shall be covered with white polyethylene sheeting or burlap-polyethylene blankets. For construction items other than bridge decks, soaker hoses or a continuous wetting system will not be required if the alternative method keeps the cotton mats wet. Periodic wetting of the cotton mats is acceptable. For areas inaccessible to the cotton mats on bridge decks, curing shall be according to Article 1020.13(a)(3). (b) Removing and Replacing Curing Covering. When curing methods specified above in Article 1020.13(a), (1), (2), or (3) are used for concrete pavement, the curing covering for each day's paving shall be removed to permit testing of the pavement surface with a profilograph or straightedge, as directed by the Engineer. Immediately after testing, the surface of the pavement shall be wetted thoroughly and the curing coverings replaced. The top surface and the edges of the concrete shall not be left unprotected for a period of more than 1/2 hour. (c) Protection of Concrete, Other Than Structures, From Low Air Temperatures. When the official National Weather Service forecast for the construction area predicts a low of 32 °F (0 °C), or lower, or if the actual temperature drops to 32 °F (0 °C), or lower, concrete
less than 72 hours old shall be provided at least the following protection. | Minimum Temperature | Protection | | |------------------------|--|--| | 25 - 32 °F (-4 - 0 °C) | Two layers of polyethylene sheeting, one layer of polyethylene and one layer of burlap, or two layers of waterproof paper. | | | Below 25 °F (-4 °C) | 6 in. (150 mm) of straw covered with one layer of polyethylene sheeting or waterproof paper. | | These protective covers shall remain in place until the concrete is at least 96 hours old. When straw is required on pavement cured with membrane curing compound, the compound shall be covered with a layer of burlap, polyethylene sheeting or waterproof paper before the straw is applied. After September 15, there shall be available to the work within four hours, sufficient clean, dry straw to cover at least two days production. Additional straw shall be provided as needed to afford the protection required. Regardless of the precautions taken, the Contractor shall be responsible for protection of the concrete placed and any concrete damaged by cold temperatures shall be removed and replaced. (d) Protection of Concrete Structures From Low Air Temperatures. When the official National Weather Service forecast for the construction area predicts a low below 45 °F (7 °C), or if the actual temperature drops below 45 °F (7 °C), concrete less than 72 hours old shall be provided protection. Concrete shall also be provided protection when placed during the winter period of December 1 through March 15. Concrete shall not be placed until the materials, facilities, and equipment for protection are approved by the Engineer. When directed by the Engineer, the Contractor may be required to place concrete during the winter period. When winter construction is specified, the Contractor shall proceed with the construction, including excavation, pile driving, concrete, steel erection, and all appurtenant work required for the complete construction of the item, except at times when weather conditions make such operations impracticable. Regardless of the precautions taken, the Contractor shall be responsible for protection of the concrete placed and any concrete damaged by cold temperatures shall be removed and replaced. (1) Protection Method I. The concrete shall be completely covered with insulating material such as fiberglass, rock wool, or other approved commercial insulating material having the minimum thermal resistance R, as defined in ASTM C 168, for the corresponding minimum dimension of the concrete unit being protected as shown in the following table. | Minimum Pour Dimension | | Thermal | |------------------------|----------------|--------------| | in. | (mm) | Resistance R | | 6 or less | (150 or less) | R=16 | | > 6 to 12 | (> 150 to 300) | R=10 | | > 12 to 18 | (> 300 to 450) | R=6 | | > 18 | (> 450) | R=4 | The insulating material manufacturer shall clearly mark the insulating material with the thermal resistance R value. The insulating material shall be completely enclosed on sides and edges with an approved waterproof liner and shall be maintained in a serviceable condition. Any tears in the liner shall be repaired in a manner approved by the Engineer. The Contractor shall provide means for checking the temperature of the surface of the concrete during the protection period. On formed surfaces, the insulating material shall be attached to the outside of the forms with wood cleats or other suitable means to prevent any circulation of air under the insulation and shall be in place before the concrete is placed. The blanket insulation shall be applied tightly against the forms. The edges and ends shall be attached so as to exclude air and moisture. If the blankets are provided with nailing flanges, the flanges shall be attached to the studs with cleats. Where tie rods or reinforcement bars protrude, the areas adjacent to the rods or bars shall be adequately protected in a manner satisfactory to the Engineer. Where practicable, the insulation shall overlap any previously placed concrete by at least 1 ft (300 mm). Insulation on the underside of floors on steel members shall cover the top flanges of supporting members. On horizontal surfaces, the insulating material shall be placed as soon as the concrete has set, so that the surface will not be marred and shall be covered with canvas or other waterproof covering. The insulating material shall remain in place for a period of seven days after the concrete is placed. The Contractor may remove the forms, providing the temperature is 35 °F (2 °C) and rising and the Contractor is able to wrap the particular section within two hours from the time of the start of the form removal. The insulation shall remain in place for the remainder of the seven days curing period. (2) Protection Method II. The concrete shall be enclosed in adequate housing and the air surrounding the concrete kept at a temperature of not less than 50 °F (10 °C) nor more than 80 °F (27 °C) for a period of seven days after the concrete is placed. The Contractor shall provide means for checking the temperature of the surface of the concrete or air temperature within the housing during the protection period. All exposed surfaces within the housing shall be cured according to the Index Table. The Contractor shall provide adequate fire protection where heating is in progress and such protection shall be accessible at all times. The Contractor shall maintain labor to keep the heating equipment in continuous operation. At the close of the heating period, the temperature shall be decreased to the approximate temperature of the outside air at a rate not to exceed 15 °F (8 °C) per 12 hour period, after which the housing maybe removed. The surface of the concrete shall be permitted to dry during the cooling period. - (3) Protection Method III. As soon as the surface is sufficiently set to prevent marring, the concrete shall be covered with 12 in. (300 mm) of loose, dry straw followed by a layer of impermeable covering. The edges of the covering shall be sealed to prevent circulation of air and prevent the cover from flapping or blowing. The protection shall remain in place until the concrete is seven days old. If construction operations require removal, the protection removed shall be replaced immediately after completion or suspension of such operations. - 1020.14 Temperature Control for Placement. Temperature control for concrete placement shall be according to the following. - (a) Concrete other than Structures. Concrete may be placed when the air temperature is above 35 °F (2 °C) and rising, and concrete placement shall stop when the falling temperature reaches 40 °F (4 °C) or below, unless otherwise approved by the Engineer. The temperature of concrete immediately before placement shall be a minimum of 50 °F (10 °C) and a maximum of 90 °F (32 °C). If concrete is pumped, the temperature of the concrete as placed in the forms shall be a minimum of 50 °F (10 °C) and a maximum of 90 °F (32 °C). A maximum concrete temperature shall not apply to Class PP concrete. (b) Concrete in Structures. Concrete may be placed when the air temperature is above 40 °F (4 °C) and rising, and concrete placement shall stop when the falling temperature reaches 45 °F (7 °C) or below, unless otherwise approved by the Engineer. The temperature of the concrete immediately before placement shall be a minimum of 50 °F (10 °C) and a maximum of 90 °F (32 °C). If concrete is pumped, the temperature of the concrete as placed in the forms shall be a minimum of 50 °F (10 °C) and a maximum of 90 °F (32 °C). When insulated forms are used, the maximum temperature of the concrete mixture immediately before placement shall be 80 °F (25 °C). When concrete is placed in contact with previously placed concrete, the temperature of the mixed concrete may be increased to 80 °F (25 °C) by the Contractor to offset anticipated heat loss. - (c) All Classes of Concrete. Aggregates and water shall be heated or cooled uniformly and as necessary to produce concrete within the specified temperature limits. No frozen aggregates shall be used in the concrete. - (d) Temperature. The concrete temperature shall be determined according to Illinois Modified AASHTO T 309. - 1020.15 Heat of Hydration Control for Concrete Structures. The Contractor shall control the heat of hydration for concrete structures when the least dimension for a drilled shaft, foundation, footing, substructure, or superstructure concrete pour exceeds 5.0 ft (1.5 m). The work shall be according to the following. - (a) Temperature Restrictions. The maximum temperature of the concrete after placement shall not exceed 150 °F (66 °C). The maximum temperature differential between the internal concrete core and concrete 2 to 3 in. (50 to 75 mm) from the exposed surface shall not exceed 35 °F (19 °C). The Contractor shall perform temperature monitoring to ensure compliance with the temperature restrictions. - (b) Thermal Control Plan. The Contractor shall provide a thermal control plan a minimum of 28 calendar days prior to concrete placement for review by the Engineer. Acceptance of the thermal control plan by the Engineer shall not preclude the Contractor from specification compliance, and from preventing cracks in the concrete. At a minimum, the thermal control plan shall provide detailed information on the following requested items and shall comply with the specific specifications indicated for each item. - (1) Concrete mix design(s) to be used. Grout mix design if post-cooling with embedded pipe. The mix design requirements in Articles 1020.04 and 1020.05 shall be revised to include the following additional requirements to control the heat of hydration. - a. The concrete mixture shall be uniformly graded and preference for larger size aggregate shall be used in the mix
design. Article 1004.02(d)(2) and information in the "Portland Cement Concrete Level III Technician Course – Manual of Instructions for Design of Concrete Mixtures" shall be used to develop the uniformly graded mixture. - b. The following shall apply to all concrete except Class DS concrete or when self-consolidating concrete is desired. For central-mixed concrete, the Contractor shall have the option to develop a mixture with a minimum of 520 lbs/cu yd (309 kg/cu m) of cement and finely divided minerals summed together. For truck-mixed or shrink-mixed concrete, the Contractor shall have the option to develop a mixture with a minimum of 550 lbs/cu yd (326 kg/cu m) of cement and finely divided minerals summed together. A water-reducing or high range water-reducing admixture shall be used in the central mixed, truck-mixed or shrink-mixed concrete mixture. For any mixture to be placed underwater, the minimum cement and finely divided minerals shall be 550 lbs/cu yd (326 kg/cu m) for central-mixed concrete, and 580 lbs/cu yd (344 kg/cu m) for truck-mixed or shrink-mixed concrete. For Class DS concrete, CA 11 may be used. If CA 11 is used, the Contractor shall have the option to develop a mixture with a minimum cement and finely divided minerals of 605 lbs/cu yd (360 kg/cu m) summed together. If CA 11 is used and either Class DS concrete is placed underwater or a self-consolidating concrete mixture is desired, the Contractor shall have the option to develop a mixture with a minimum cement and finely divided minerals of 635 lbs/cu yd (378 kg/cu m) summed together. - c. The minimum portland cement content in the mixture shall be 375 lbs/cu yd (222 kg/cu m). When the total of organic processing additions, inorganic processing additions, and limestone addition exceed 5.0 percent in the cement, the minimum portland cement content in the mixture shall be 400 lbs/cu yd (237 kg/cu m). For a drilled shaft, foundation, footing, or substructure, the minimum portland cement may be reduced to as low as 330 lbs/cu yd (196 kg/cu m) if the concrete has adequate freeze/thaw durability. The Contractor shall provide freeze/thaw test results according to AASHTO T 161 Procedure A or B, and the relative dynamic modulus of elasticity of the mix design shall be a minimum of 80 percent. Freeze/thaw testing will not be required for concrete that will not be exposed to freezing and thawing conditions as determined by the Engineer. - d. The maximum cement replacement with fly ash shall be 40.0 percent. The maximum cement replacement with ground granulated blast-furnace slag shall be 65.0 percent. When cement replacement with ground granulated blastfurnace slag exceeds 35.0 percent, only Grade 100 shall be used. - e. The mixture may contain a maximum of two finely divided minerals. The finely divided mineral in portland-pozzolan cement or portland blast-furnace slag cement shall count toward the total number of finely divided minerals allowed. The finely divided minerals shall constitute a maximum of 65.0 percent of the total cement plus finely divided minerals. The fly ash portion shall not exceed 40.0 percent. The ground granulated blast-furnace slag portion shall not exceed 65.0 percent. The microsilica or high-reactivity metakaolin portion used together or separately shall not exceed 5.0 percent. - f. The time to obtain the specified strength may be increased to a maximum 56 days, provided the curing period specified in Article 1020.13 is increased to a minimum of 14 days. The minimum grout strength for filling embedded pipe shall be as specified for the concrete, and testing shall be according to AASHTO T 106. (2) The selected mathematical method for evaluating heat of hydration thermal effects, which shall include the calculated adiabatic temperature rise, calculated maximum concrete temperature, and calculated maximum temperature differential between the internal concrete core and concrete 2 to 3 in. (50 to 75 mm) from the exposed surface. The time when the maximum concrete temperature and maximum temperature differential will occur is required if the time frame will be more than seven days. Acceptable mathematical methods include ACI 207.2R "Report on Thermal and Volume Change Effects on Cracking of Mass Concrete" as well as other proprietary methods. The Contractor shall perform heat of hydration testing on the cement and finely divided minerals to be used in the concrete mixture. The test shall be according to ASTM C 186 or other applicable test methods, and the result for heat shall be used in the equation to calculate adiabatic temperature rise. The Contractor has the option to propose a higher maximum temperature differential between the internal concrete core and concrete 2 to 3 in. (50 to 75 mm) from the exposed surface, but the proposed value shall not exceed 50 °F (10 °C). In addition, based on strength gain of the concrete, multiple maximum temperature differentials at different times may be proposed. The proposed value shall be justified through a mathematical method. (3) Proposed maximum concrete temperature or temperature range prior to placement. Article 1020.14 shall apply except a minimum 40 °F (10 °C) concrete temperature will be permitted. (4) Pre-cooling, post-cooling, and surface insulation methods that will be used to ensure the concrete will comply with the specified maximum temperature and specified or proposed temperature differential. For reinforcement that extends beyond the limits of the pour, the Contractor shall indicate if the reinforcement is required to be covered with insulation. Refer to ACI 207.4R "Cooling and Insulating Systems for Mass Concrete" for acceptable methods that will be permitted. A copy of the ACI document shall be provided to the Engineer at the construction site. If embedded pipe is used for postcooling, the material shall be polyvinyl chloride or polyethylene. The embedded pipe system shall be properly supported, and the Contractor shall subsequently inspect glued joints to ensure they are able to withstand free falling concrete. embedded pipe system shall be leak tested after inspection of the glued joints, and prior to the concrete placement. The leak test shall be performed at maximum service pressure or higher for a minimum of 15 minutes. All leaks shall be repaired. The embedded pipe cooling water may be from natural sources such as streams and rivers, but shall be filtered to prevent system stoppages. When the embedded pipe is no longer needed, the surface connections to the pipe shall be removed to a depth of 4 in. (100 mm) below the surface of the concrete. The remaining pipe shall be completely filled with grout. The 4 in. (100 mm) deep concrete hole shall be filled with nonshrink grout. Form and insulation removal shall be done in a manner to prevent cracking and ensure the maximum temperature differential is maintained. Insulation shall be in good condition as determined by the Engineer and properly attached. (5) Dimensions of each concrete pour, location of construction joints, placement operations, pour pattern, lift heights, and time delays between lifts. Refer to ACI 207.1R "Guide to Mass Concrete" for acceptable placement operations that will be permitted. A copy of the ACI document shall be provided to the Engineer at the construction site. (6) Type of temperature monitoring system, the number of temperature sensors, and location of sensors. A minimum of two independent temperature monitoring systems and corresponding sensors shall be used. The temperature monitoring system shall have a minimum temperature range of 32 °F (0 °C) to 212 °F (100 °C), an accuracy of \pm 2 °F (\pm 1 °C), and be able to automatically record temperatures without external power. Temperature monitoring shall begin once the sensor is encased in concrete, and with a maximum interval of one hour. Temperature monitoring may be discontinued after the maximum concrete temperature has been reached, post-cooling is no longer required, and the maximum temperature differential between the internal concrete core and the ambient air temperature does not exceed 35 °F (19 °C). The Contractor has the option to select a higher maximum temperature differential, but the proposed value shall not exceed 50 °F (28 °C). The proposed value shall be justified through a mathematical method. At a minimum, a temperature sensor shall be located at the theoretical hottest portion of the concrete, normally the geometric center, and at the exterior face that will provide the maximum temperature differential. At the exterior face, the sensor shall be located 2 to 3 in. (50 to 75 mm) from the surface of the concrete. Sensors shall also be located a minimum of 1 in. (25 mm) away from reinforcement, and equidistant between cooling pipes if either applies. A sensor will also be required to measure ambient air temperature. The entrant/exit cooling water temperature for embedded pipe shall also be monitored. Temperature monitoring results shall be provided to the Engineer a minimum of once each day and whenever requested by the Engineer. The report may be electronic or hard copy. The report shall indicate the location of each sensor, the temperature recorded, and the time recorded. The report shall be for all sensors and shall include ambient air temperature and entrant/exit cooling water temperatures. The temperature data in the report may be provided in tabular or graphical format, and the report shall indicate any corrective actions during the monitoring period. At the completion of the monitoring period, the Contractor shall provide the Engineer a final report that includes all temperature data and corrective actions. - (7) Indicate contingency operations to be used if the maximum temperature or temperature differential of the concrete is reached after placement. - (c) Temperature Restriction Violations. If the maximum temperature of the concrete after placement exceeds 150 °F (66 °C), but is less than 158 °F (70 °C),
the concrete will be accepted if no cracking or other unacceptable defects are identified. If cracking or unacceptable defects are identified, Article 105.03 shall apply. If the concrete temperature exceeds 158 °F (70 °C), Article 105.03 shall apply. If a temperature differential between the internal concrete core and concrete 2 to 3 in. (50 to 75 mm) from the exposed surface exceeds the specified or proposed maximum value allowed, the concrete will be accepted if no cracking or other unacceptable defects are identified. If unacceptable defects are identified, Article 105.03 shall apply. When the maximum 150 °F (66 °C) concrete temperature or the maximum allowed temperature differential is violated, the Contractor shall implement corrective action prior to the next pour. In addition, the Engineer reserves the right to request a new thermal control plan for acceptance before the Contractor is allowed to pour again. (d) Inspection and Repair of Cracks. The Engineer will inspect the concrete for cracks after the temperature monitoring is discontinued, and the Contractor shall provide access for the Engineer to do the inspection. A crack may require repair by the Contractor as determined by the Engineer. The Contractor shall be responsible for the repair of all cracks. Protective coat or a concrete sealer shall be applied to a crack less than 0.007 in. (0.18 mm) in width. A crack that is 0.007 in. (0.18 mm) or greater shall be pressure injected with epoxy according to Section 590. 80279 # QUALITY CONTROL/QUALITY ASSURANCE OF CONCRETE MIXTURES (BDE) Effective: January 1, 2012 Add the following to Section 1020 of the Standard Specifications: "1020.16 Quality Control/Quality Assurance of Concrete Mixtures. This Article specifies the quality control responsibilities of the Contractor for concrete mixtures (except Class PC and PS concrete), cement aggregate mixture II, and controlled low-strength material incorporated in the project, and defines the quality assurance and acceptance responsibilities of the Engineer. A list of quality control/quality assurance (QC/QA) documents is provided in Article 1020.16(g), Schedule D. A Level I Portland Cement Concrete (PCC) Technician shall be defined as an individual who has successfully completed the Department's training for concrete testing. A Level II Portland Cement Concrete (PCC) Technician shall be defined as an individual who has successfully completed the Department's training for concrete proportioning. A Level III Portland Cement Concrete (PCC) Technician shall be defined as an individual who has successfully completed the Department's training for concrete mix design. A Concrete Tester shall be defined as an individual who has successfully completed the Department's training to assist with concrete testing and is monitored on a daily basis. Aggregate Technician shall be defined as an individual who has successfully completed the Department's training for gradation testing involving aggregate production and mixtures. Mixture Aggregate Technician shall be defined as an individual who has successfully completed the Department's training for gradation testing involving mixtures. Gradation Technician shall be defined as an individual who has successfully completed the Department's training to assist with gradation testing and is monitored on a daily basis. (a) Equipment/Laboratory. The Contractor shall provide a laboratory and test equipment to perform their quality control testing. The laboratory shall be of sufficient size and be furnished with the necessary equipment, supplies, and current published test methods for adequately and safely performing all required tests. The laboratory will be approved by the Engineer according to the current Bureau of Materials and Physical Research Policy Memorandum "Minimum Private Laboratory Requirements for Construction Materials Testing or Mix Design". Production of a mixture shall not begin until the Engineer provides written approval of the laboratory. The Contractor shall refer to the Department's "Required Sampling and Testing Equipment for Concrete" for equipment requirements. Test equipment shall be maintained and calibrated as required by the appropriate test method, and when required by the Engineer. This information shall be documented on the Department's "Calibration of Concrete Testing Equipment" form. Test equipment used to determine compressive or flexural strength shall be calibrated each 12 month period by an independent agency, using calibration equipment traceable to the National Institute of Standards and Technology (NIST). The Contractor shall have the calibration documentation available at the test equipment location. The Engineer will have unrestricted access to the plant and laboratory at any time to inspect measuring and testing equipment, and will notify the Contractor of any deficiencies. Defective equipment shall be immediately repaired or replaced by the Contractor. (b) Quality Control Plan. The Contractor shall submit, in writing, a proposed Quality Control (QC) Plan to the Engineer. The QC Plan shall be submitted a minimum of 45 calendar days prior to the production of a mixture. The QC Plan shall address the quality control of the concrete, cement aggregate mixture II, and controlled low-strength material incorporated in the project. The Contractor shall refer to the Department's "Model Quality Control Plan for Concrete Production" to prepare a QC Plan. The Engineer will respond in writing to the Contractor's proposed QC Plan within 15 calendar days of receipt. Production of a mixture shall not begin until the Engineer provides written approval of the QC Plan. The approved QC Plan shall become a part of the contract between the Department and the Contractor, but shall not be construed as acceptance of any mixture produced. 36.7 The QC Plan may be amended during the progress of the work, by either party, subject to mutual agreement. The Engineer will respond in writing to a Contractor's proposed QC Plan amendment within 15 calendar days of receipt. The response will indicate the approval or denial of the Contractor's proposed QC Plan amendment. (c) Quality Control by Contractor. The Contractor shall perform quality control inspection, sampling, testing, and documentation to meet contract requirements. Quality control includes the recognition of obvious defects and their immediate correction. Quality control also includes appropriate action when passing test results are near specification limits, or to resolve test result differences with the Engineer. Quality control may require increased testing, communication of test results to the plant or the jobsite, modification of operations, suspension of mixture production, rejection of material, or other actions as appropriate. The Engineer shall be immediately notified of any failing tests and subsequent remedial action. Passing tests shall be reported no later than the start of the next work day. When a mixture does not comply with specifications, the Contractor shall reject the material; unless the Engineer accepts the material for incorporation in the work, according to Article 105.03. (1) Personnel Requirements. The Contractor shall provide a Quality Control (QC) Manager who will have overall responsibility and authority for quality control. The jobsite and plant personnel shall be able to contact the QC Manager by cellular phone, two-way radio or other methods approved by the Engineer. The QC Manager shall visit the jobsite a minimum of once a week. A visit shall be performed the day of a bridge deck pour, the day a non-routine mixture is placed as determined by the Engineer, or the day a plant is anticipated to produce more than 1000 cu yd (765 cu m). Any of the three required visits may be used to meet the once per week minimum requirement. The Contractor shall provide personnel to perform the required inspections, sampling, testing and documentation in a timely manner. The Contractor shall refer to the Department's "Qualifications and Duties of Concrete Quality Control Personnel" document. A Level I PCC Technician shall be provided at the jobsite during mixture production and placement, and may supervise concurrent pours on the project. For concurrent pours, a minimum of one Concrete Tester shall be required at each pour location. If the Level I PCC Technician is at one of the pour locations, a Concrete Tester is still required at the same location. Each Concrete Tester shall be able to contact the Level I PCC Technician by cellular phone, two-way radio or other methods approved by the Engineer. A single Level I PCC Technician shall not supervise concurrent pours for multiple contracts. A Level II PCC Technician shall be provided at the plant, or shall be available, during mixture production and placement. A Level II PCC Technician may supervise a maximum of three plants. Whenever the Level II PCC Technician is not at the plant during mixture production and placement, a Concrete Tester or Level I PCC Technician shall be present at the plant to perform any necessary concrete tests. The Concrete Tester, Level I PCC Technician, or other individual shall also be trained to perform any necessary aggregate moisture tests, if the Level II PCC Technician is not at the plant during mixture production and placement. The Concrete Tester, Level I PCC Technician, plant personnel, and jobsite personnel shall have the ability to contact the Level II PCC Technician by celiular phone, two-way radio, or other methods approved by the Engineer. For a mixture which is produced and placed with a mobile portland cement concrete plant as defined in Article 1103.04, a Level II PCC Technician shall be provided. The Level II PCC Technician shall be present at all times during mixture production and placement. A Concrete Tester, Mixture Aggregate Technician, and Aggregate Technician may provide assistance with sampling and testing. A Gradation Technician may provide assistance
with testing. A Concrete Tester shall be supervised by a Level I or Level II PCC Technician. A Gradation Technician shall be supervised by a Level II PCC Technician, Mixture Aggregate Technician, or Aggregate Technician. - (2) Required Plant Tests. Sampling and testing shall be performed at the plant, or at a location approved by the Engineer, to control the production of a mixture. The required minimum Contractor plant sampling and testing is indicated in Article 1020.16(g) Schedule A. - (3) Required Field Tests. Sampling and testing shall be performed at the jobsite to control the production of a mixture, and to comply with specifications for placement. For standard curing, after initial curing, and for strength testing; the location shall be approved by the Engineer. The required minimum Contractor jobsite sampling and testing is indicated in Article 1020.16(g), Schedule B. - (d) Quality Assurance by Engineer. The Engineer will perform quality assurance tests on independent samples and split samples. An independent sample is a field sample obtained and tested by only one party. A split sample is one of two equal portions of a field sample, where two parties each receive one portion for testing. The Engineer may request the Contractor to obtain a split sample. Aggregate split samples and any failing strength specimen shall be retained until permission is given by the Engineer for disposal. The results of all quality assurance tests by the Engineer will be made available to the Contractor. However, Contractor split sample test results shall be provided to the Engineer before Department test results are revealed. The Engineer's quality assurance independent sample and split sample testing is indicated in Article 1020.16(g), Schedule C. - (1) Strength Testing. For strength testing, Article 1020.09 shall apply, except the Contractor and Engineer beam strength specimens may be cured in the same tank. - (2) Comparing Test Results. Differences between the Engineer's and the Contractor's split sample test results will not be considered extreme if within the following limits: | Test Parameter | Acceptable Limits of Precision | |----------------------|---| | Slump | 0.75 in. (20 mm) | | Air Content | 0.9% | | Compressive Strength | 900 psi (6200 kPa) | | Flexural Strength | 90 psi (620 kPa) | | Aggregate Gradation | See "Guideline for Sample Comparison" in Appendix "A" of the Manual of Test Procedures for Materials. | When acceptable limits of precision have been met, but only one party is within specification limits, the failing test shall be resolved before the material may be considered for acceptance. - (3)Test Results and Specification Limits. - a. Split Sample Testing. If either the Engineer's or the Contractor's split sample test result is not within specification limits, and the other party is within specification limits; immediate retests on a split sample shall be performed for slump, air content, or aggregate gradation. A passing retest result by each party will require no further action. If either the Engineer's or Contractor's slump, air content, or aggregate gradation split sample retest result is a failure; or if either the Engineer's or Contractor's strength test result is a failure, and the other party is within specification limits; the following actions shall be initiated to investigate the test failure: - 1. The Engineer and the Contractor shall investigate the sampling method, test procedure, equipment condition, equipment calibration, and other factors. - 2. The Engineer or the Contractor shall replace test equipment, as determined by the Engineer. 3. The Engineer and the Contractor shall perform additional testing on split samples, as determined by the Engineer. For aggregate gradation, jobsite slump, and jobsite air content; if the failing split sample test result is not resolved according to 1., 2., or 3., and the mixture has not been placed, the Contractor shall reject the material; unless the Engineer accepts the material for incorporation in the work according to Article 105.03. If the mixture has already been placed, or if a failing strength test result is not resolved according to 1., 2., or 3., the material will be considered unacceptable. If a continued trend of difference exists between the Engineer's and the Contractor's split sample test results, or if split sample test results exceed the acceptable limits of precision, the Engineer and the Contractor shall investigate according to items 1., 2., and 3. - b. Independent Sample Testing. For aggregate gradation, jobsite slump, and jobsite air content; if the result of a quality assurance test on a sample independently obtained by the Engineer is not within specification limits, and the mixture has not been placed, the Contractor shall reject the material, unless the Engineer accepts the material for incorporation in the work according to Article 105.03. If the mixture has already been placed or the Engineer obtains a failing strength test result, the material will be considered unacceptable. - (e) Acceptance by the Engineer. Final acceptance will be based on the Standard Specifications and the following: - (1) The Contractor's compliance with all contract documents for quality control. - (2) Validation of Contractor quality control test results by comparison with the Engineer's quality assurance test results using split samples. Any quality control or quality assurance test determined to be flawed may be declared invalid only when reviewed and approved by the Engineer. The Engineer will declare a test result invalid only if it is proven that improper sampling or testing occurred. The test result is to be recorded and the reason for declaring the test invalid will be provided by the Engineer. - (3) Comparison of the Engineer's quality assurance test results with specification limits using samples independently obtained by the Engineer. The Engineer may suspend mixture production, reject materials, or take other appropriate action if the Contractor does not control the quality of concrete, cement aggregate mixture II, or controlled low-strength material for acceptance. The decision will be determined according to (1), (2), or (3). - (f) Documentation. - (1) Records. The Contractor shall be responsible for documenting all observations, inspections, adjustments to the mix design, test results, retest results, and corrective actions in a bound hardback field book, bound hardback diary, or appropriate Department form, which shall become the property of the Department. The documentation shall include a method to compare the Engineer's test results with the Contractor's results. The Contractor shall be responsible for the maintenance of all permanent records whether obtained by the Contractor, the consultants, the subcontractors, or the producer of the mixture. The Contractor shall provide the Engineer full access to all documentation throughout the progress of the work. The Department's form MI 504M, form BMPR MI654, and form BMPR MI655 shall be completed by the Contractor, and shall be submitted to the Engineer weekly or as required by the Engineer. A correctly completed form MI 504M, form BMPR MI654, and form BMPR MI655 are required to authorize payment by the Engineer, for applicable pay items. - (2) Delivery Truck Ticket. The following information shall be recorded on each delivery ticket or in a bound hardback field book: initial/final revolution counter reading, at the jobsite, if the mixture is truck-mixed; time discharged at the jobsite; total amount of each admixture added at the jobsite; total amount of water added at the jobsite; and total amount of cement added at the jobsite if the air content needed adjustment. - (g) Basis of Payment and Schedules. Quality Control/Quality Assurance of portland cement concrete mixtures will not be paid for separately, but shall be considered as included in the cost of the various concrete contract items. 38. X ### SCHEDULE A | CONTRACTOR PLANT SAMPLING AND TESTING | | | | |---|--|--|--| | Item | Test | Frequency | IL Modified AASHTO
or Department Test Method | | Aggregates
(Arriving at Plant) | Gradation 2/ | | T 2, T 11, T 27, and
T 248 | | Aggregates
(Stored at Plant i
Stockpiles or Bins) | n Gradation ^{2/} | 2,500 cu yd
(1,900 cu m) for each
gradation number ³ | T 2, T 11, T 27, and
T 248 | | Aggregates
(Stored at Plant i
Stockpiles or Bins) | Moisture ^{4/} :
Fine Aggregate | Once per week for moisture sensor, otherwise daily for each gradation number | Pychnometer Jar | | | Moisture ^{4/} :
Coarse
Aggregate | As needed to control production for each gradation number | | | Mixture ^{5/} | Slump, Air Content, Unit Weight / Yield, and Temperature | As needed to control production | T 141 and T 119
T 141 and T 152 or
T 196
T 141 and T 121
T 141 and T 309 | - 1/ Refer to the Department's "Manual of Test Procedures for Materials". - 2/ All gradation tests shall be washed. Testing shall be completed no later than 24 hours after the aggregate has been sampled. - 3/ One per week (Sunday through Saturday) minimum unless the stockpile has not received additional aggregate material since the previous test. - One per day minimum for a bridge deck pour unless the stockpile has not received additional aggregate material since the previous test. The sample shall be taken and testing completed prior to the pour. The bridge deck aggregate sample may be taken the day before the pour or as approved by the Engineer. - 4/ If the moisture test and moisture sensor disagree by more than 0.5 percent,
retest. If the difference remains, adjust the moisture sensor to an average of two or more moisture tests, using the Dunagan or Illinois Modified AASHTO T 255 test method. The Department's "Water/Cement Ratio Worksheet" form shall be completed when applicable. - 5/ The Contractor may also perform strength testing according to Illinois Modified AASHTO T 141, T 23, and T 22 or T 177; or water content testing according to Illinois Modified AASHTO T 318; or other tests at the plant to control mixture production. # SCHEDULE B | CONTRACTOR JOBSITE SAMPLING & TESTING 1/ | | | | |---|---|---|---| | Item | Measured
Property | Random Sample
Testing Frequency
per Mix Design and
per Plant ^{2/} | IL Modified
AASHTO Test
Method | | Pavement,
Shoulder,
Base Course, | Slump 3/4/ | 1 per 500 cu yd
(400 cu m) or
minimum 1/day | T 141 and T 119 | | Base Course
Widening,
Driveway Pavement, | Air Content 3/5/ | 1 per 100 cu yd
(80 cu m) or
minimum 1/day | T 141
And
T 152 or T 196 | | Railroad Crossing, Cement Aggregate Mixture II | Compressive Strength ^{7/8/} or Flexural Strength ^{7/8/} | 1 per 1250 cu yd
(1000 cu m) or
minimum 1/day | T 141, T 22 and
T 23
Or
T 141, T 177 and
T 23 | | Bridge Approach
Slab ^{9/} ,
Bridge Deck ^{9/} , | Slump 3/4/ | 1 per 50 cu yd
(40 cu m) or
minimum 1/day | T 141 and T 119 | | Bridge Deck Overlay 9' Superstructure 9', | Air Content 3/5/
6/ | 1 per 50 cu yd
(40 cu m) or
minimum 1/day | T 141
And
T 152 or T 196 | | Substructure, Culvert, Miscellaneous Drainage Structures, Retaining Wall, Building Wall, Drilled Shaft Pile & Encasement Footing, Foundation, Pavement Patching, Structural Repairs | Compressive
Strength ^{77,87}
or
Flexural
Strength ^{77,87} | 1 per 250 cu yd
(200 cu m) or
minimum 1/day | T 141, T 22 and
T 23
Or
T 141, T 177 and
T 23 | | Seal Coat | Slump 3/ | 1 per 250 cu yd
(200 cu m)
or
minimum 1/day | T 141 and T 119 | | • | Air Content 3/ 6/ | As needed to control production | T 141
And
T 152 or T 196 | | | Compressive
Strength ^{7/8/}
or
Flexural | 1 per 250 cu yd
(200 cu m)
or | T 141, T 22 and
T 23
Or
T 141, T 177 and | | | Strength 7/8/ | minimum 1/day | T 23 | ... **** | C | ONTRACTOR JOBSIT | E SAMPLING & TESTING | G ^{1/} | |---|---|---|--| | Curb,
Gutter,
Median. | Slump 3/4/ | 1 per 100 cu yd
(80 cu m) or
minimum 1/day | T 141 and T 119 | | Barrier, Sidewalk, Slope Wall, Paved Ditch, Fabric Formed Concrete Revetment Mat 10/, Miscellaneous Items, Incidental Items | Air Content 3/5/6/ | 1 per 50 cu yd
(40 cu m) or
minimum 1/day | T 141
And
T 152 or T 196 | | | Compressive
Strength ^{7/8/}
or
Flexural
Strength ^{7/8/} | 1 per 400 cu yd
(300 cu m)
or minimum 1/day | T 141, T 22 and T 23
Or
T 141, T 177 and
T 23 | | All | Temperature 3/ | As needed to control production | T 141 and
T 309 | | Controlled Low-Strength
Material (CLSM) | Flow, Air Content
and
Compressive
Strength | As needed to control production | Iilinois Test Procedure
307 | - 1/ Sampling and testing of small quantities of curb, gutter, median, barrier, sidewalk, slope wall, paved ditch, miscellaneous items, and incidental items may be waived by the Engineer if requested by the Contractor. However, quality control personnel are still required according to Article 1020.16(c)(1) The Contractor shall also provide recent evidence that similar material has been found to be satisfactory under normal sampling and testing procedures. The total quantity that may be waived for testing shall not exceed 100 cu yd (76 cu m) per contract. - 2/ If one mix design is being used for several construction items during a day's production, one testing frequency may be selected to include all items. The construction items shall have the same slump, air content, and water/cement ratio specifications. The frequency selected shall equal or exceed the testing required for the construction item. - One sufficiently sized sample shall be taken to perform the required test(s). Random numbers shall be determined according to the Department's "Method for Obtaining Random Samples for Concrete". The Engineer will provide random sample locations. - 3/ The temperature, slump, and air content tests shall be performed on the first truck load delivered, for each pour. Unless a random sample is required for the first truck load, testing the first truck load does not satisfy random sampling requirements. - 4/ The slump random sample testing frequency shall be a minimum 1/day for a construction item which is slipformed. - 5/ If a pump or conveyor is used for placement, a correction factor shall be established to allow for a loss of air content during transport. The first three truck loads delivered shall be tested, before and after transport by the pump or conveyor, to establish the correction factor. Once the correction is determined, it shall be re-checked after an additional 50 cu yd (40 cu m) is pumped, or an additional 100 cu yd (80 cu m) is conveyored. This shall continue throughout the pour. If the re-check indicates the correction factor has changed, a minimum of two truckloads is required to re-establish the correction factor. The correction factor shall also be re-established when significant changes in temperature, distance, pump or conveyor arrangement, and other factors have occurred. If the correction factor is 3.0 percent or more, the Contractor shall take corrective action to reduce the loss of air content during transport by the pump or conveyor. The Contractor shall record all air content test results, correction factors and corrected air contents. The corrected air content shall be reported on form BMPR MI654. - 6/ If the Contractor's or Engineer's air content test result is within the specification limits, and 0.2 percent or closer to either limit, the next truck load delivered shall be tested by the Contractor. For example, if the specified air content range is 5.0 to 8.0 percent and the test result is 5.0, 5.1, 5.2, 7.8, 7.9 or 8.0 percent, the next truck shall be tested by the Contractor. - If the Contractor's or Engineer's air content or slump test result is not within the specification limits, all subsequent truck loads delivered shall be tested by the Contractor until the problem is corrected. - 7/ The test of record for strength shall be the day indicated in Article 1020.04. For cement aggregate mixture II, a strength requirement is not specified and testing is not required. Additional strength testing to determine early falsework and form removal, early pavement or bridge opening to traffic, or to monitor strengths is at the discretion of the Contractor. Strength shall be defined as the average of at least two cylinder or two beam breaks for field tests. - 8/ In addition to the strength test, an air test, slump test, and temperature test shall be performed on the same sample. For mixtures pumped or conveyored, the Contractor shall sample according to Illinois Modified AASHTO T 141. - 9/ The air content test will be required for each delivered truck load. le de 10/ For fabric formed concrete revetment mat, the slump test is not required and the flexural strength test is not applicable. ### SCHEDULE C | ENGINEER QUALITY ASSURANCE INDEPENDENT SAMPLE TESTING | | | |---|---|--------------------------------| | Location | Measured Property Testing Frequency 1/ | | | Plant | Gradation of aggregates stored in stockpiles or bins, Slump and Air Content | As determined by the Engineer. | | Jobsite | Slump, Air Content and Strength | As determined by the Engineer. | | ENGINEER QUALITY ASSURANCE SPLIT SAMPLE TESTING | | | |---|---|--| | Location | Measured Property | Testing Frequency 1/ | | Plant | Gradation of aggregates stored in stockpiles or bins ² | At the beginning of the project, the first test performed by the Contractor. Thereafter, a minimum of 10% of total tests required of the Contractor will be performed per aggregate gradation number and per plant. | | | Slump and
Air Content | As determined by the Engineer. | | Jobsite | Slump ^{2/} and
Air Content ^{2/3/} | At the beginning of the project, the first three tests performed by the Contractor. Thereafter, a minimum of 20% of total tests required of the Contractor will be performed per plant, which will include a minimum of one test per mix design. | | Strength ^{2/} | | At the beginning of the project, the first test performed by the Contractor. Thereafter, a minimum of 20% of total tests required of the Contractor will be performed per plant, which will include a minimum of one test per mix design. | - 1/ The Engineer will perform the testing throughout the period of quality
control testing by the Contractor. - 2/ The Engineer will witness and take immediate possession of or otherwise secure the Department's split sample obtained by the Contractor. - 3/ Before transport by pump or conveyor, a minimum of 20 percent of total tests required of the Contractor will be performed per mix design and per plant. After transport by pump or conveyor, a minimum of 20 percent of total tests required of the Contractor will be performed per mix design and per plant. #### SCHEDULE D ### CONCRETE QUALITY CONTROL AND QUALITY ASSURANCE DOCUMENTS - (a) Model Quality Control Plan for Concrete Production (*) - (b) Qualifications and Duties of Concrete Quality Control Personnel (*) - (c) Development of Gradation Bands on Incoming Aggregate at Mix Plants (*) - (d) Required Sampling and Testing Equipment for Concrete (*) - (e) Method for Obtaining Random Samples for Concrete (*) - (f) Calibration of Concrete Testing Equipment (BMPR PCCQ01 through BMPR PCCQ09) (*) - (g) Water/Cement Ratio Worksheet (BMPR PCCW01) (*) - (h) Field/Lab Gradations (MI 504M) (*) - (i) Concrete Air, Slump and Quantity (BMPR MI654) (*) - (j) P.C. Concrete Strengths (BMPR MI655) (*) - (k) Aggregate Technician Course or Mixture Aggregate Technician Course (*) - (I) Portland Cement Concrete Tester Course (*) - (m) Portland Cement Concrete Level 1 Technician Course Manual of Instructions for Concrete Testing (*) - (n) Portland Cement Concrete Level II Technician Course Manual of Instructions for Concrete Proportioning (*) - (o) Portland Cement Concrete Level III Technician Course Manual of Instructions for Design of Concrete Mixtures (*) - (p) Manual of Test Procedures for Materials - * Refer to Appendix C of the Manual of Test Procedures for Materials for more information." 80281 ### **ERRATA FOR THE 2012 STANDARD SPECIFICATIONS (BDE)** Effective: April 1, 2012 Revised: August 1, 2012 Page 182 Article 354.12. In the second line of the first paragraph change "Article 353.12" to "Article 353.13". - Page 183 Article 355.10. In the second line of the first paragraph change "Article 353.12" to "Article 353.13". - Page 185 Article 356.10. In the second line of the first paragraph change "Article 353.12" to "Article 353.13". - Page 337 Article 505.04. Revise the subparagraph "(i) Match Making." to "(i) Match Marking." - Page 360 Article 506.07. In the first line of the second paragraph change "AASHTO/AWS D1.5/D1.5:" to "AASHTO/AWS D1.5M/D1.5:". - Page 361 Article 506.08. In the third line of the sixth paragraph change "506.08(a)" to "506.08(b)". - Page 531 Article 609.07. In the first paragraph delete "TYPE B, C, or D INLET BOX STANDARD 609001 or". - Page 601 Article 701.18(h). In the first line of the first paragraph change "Standard 701426." "Standard 701426 and 701427.". - Page 609 Article 703.05. In the first line of the second paragraph delete "or Type II". - Page 989 Article 1083.02(a). In the seventh line of the first paragraph change "Table 14.7.5.2-2" to "Table 14.7.5.2-1". - Page 1019 Article 1095.01(b)(1)e. In the table for daylight reflectance for the color yellow, change "75 % min." to "45 % min.". 80296 ### TRACKING THE USE OF PESTICIDES (BDE) Effective: August 1, 2012 Add the following paragraph after the first paragraph of Article 107.23 of the Standard Specifications: "Within 48 hours of the application of pesticides, including but not limited to herbicides, insecticides, algaecides, and fungicides, the Contractor shall complete and return to the Engineer, Operations form "OPER 2720"." 80301 # POLYUREA PAVEMENT MARKINGS (BDE) Effective: November 1, 2012 Revise the first paragraph of Article 780.13 of the Standard Specifications to read: "780.13 Basis of Payment. This work will be paid for at the contract unit prices per foot (meter) of applied line width, as specified, for THERMOPLASTIC PAVEMENT MARKING - LINE; PAINT PAVEMENT MARKING - LINE; EPOXY PAVEMENT MARKING - LINE; PREFORMED PLASTIC PAVEMENT MARKING - LINE - TYPE B, C, or B - INLAID; PREFORMED THERMOPLASTIC PAVEMENT MARKING - LINE, POLYUREA PAVEMENT MARKING TYPE II - LINE; and/or per square foot (square meter) for THERMOPLASTIC PAVEMENT MARKING - LETTERS AND SYMBOLS; PAINT PAVEMENT MARKING - LETTERS AND SYMBOLS; PREFORMED PLASTIC PAVEMENT MARKING - TYPE B, C, or B - INLAID - LETTERS AND SYMBOLS; PREFORMED THERMOPLASTIC PAVEMENT MARKING - LETTERS AND SYMBOLS; POLYUREA PAVEMENT MARKING - LETTERS AND SYMBOLS; POLYUREA PAVEMENT MARKING - LETTERS AND SYMBOLS." 80305 7.1